Skip to main content

Generalizable Kidney Segmentation for Total Volume Estimation

  • Conference paper
  • First Online:
Bildverarbeitung für die Medizin 2024 (BVM 2024)

Part of the book series: Informatik aktuell ((INFORMAT))

Included in the following conference series:

  • 308 Accesses

Abstract

We introduce a deep learning approach for automated kidney segmentation in autosomal dominant polycystic kidney disease (ADPKD). Our method combines Nyul normalization, resampling, and attention mechanisms to create a generalizable network. We evaluated our approach on two distinct datasets and found that our proposed model outperforms the baseline method with an average improvement of 9.45 % in Dice and 79.90 % in mean surface symmetric distance scores across both the datasets, demonstrating its potential for robust and accurate total kidney volume calculation from T1-w MRI images in ADPKD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chapman AB, Guay-Woodford LM, Grantham JJ, Torres VE, Bae KT, Baumgarten DA et al. Renal structure in early autosomal-dominant polycystic kidney disease (ADPKD): the consortium for radiologic imaging studies of polycystic kidney disease (CRISP) cohort. Kidney Int. 2003;64(3):1035–45.

    Google Scholar 

  2. Irazabal MV, Rangel LJ, Bergstralh EJ, Osborn SL, Harmon AJ, Sundsbak JL et al. Imaging classification of autosomal dominant polycystic kidney disease: a simple model for selecting patients for clinical trials. J Am Soc Nephrol. 2015;26(1):160.

    Google Scholar 

  3. Grantham JJ, Torres VE, Chapman AB, Guay-Woodford LM, Bae KT, King Jr BF et al. Volume progression in polycystic kidney disease. N Engl J Med. 2006;354(20):2122–30.

    Google Scholar 

  4. Raj A, Tollens F, Caroli A, Nörenberg D, Zöllner FG. Automated prognosis of renal function decline in ADPKD patients using deep learning. Z Med Phy. 2023.

    Google Scholar 

  5. Zöllner FG, Kociński M, Hansen L, Golla AK, Trbalić AŠ, Lundervold A et al. Kidney segmentation in renal magnetic resonance imaging-current status and prospects. IEEE Access. 2021;9:71577–605.

    Google Scholar 

  6. Zöllner FG, Svarstad E, Munthe-Kaas AZ, Schad LR, Lundervold A, Rørvik J. Assessment of kidney volumes from MRI: acquisition and segmentation techniques. AJR Am J Roentgenol. 2012;199(5):1060–9.

    Google Scholar 

  7. Nyúl LG, Udupa JK. On standardizing the MR image intensity scale. Magn Reson Med. 1999;42(6):1072–81.

    Google Scholar 

  8. Raj A, Tollens F, Hansen L, Golla AK, Schad LR, Nörenberg D et al. Deep learning-based total kidney volume segmentation in autosomal dominant polycystic kidney disease using attention, cosine loss, and sharpness aware minimization. Diagnostics. 2022;12(5):1159.

    Google Scholar 

  9. Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. Proc MICCAI. Springer. 2015:234–41.

    Google Scholar 

  10. Isensee F, Jaeger PF, Kohl SA, Petersen J, Maier-Hein KH. nnU-net: a self-configuring method for deep learning-based biomedical image segmentation.Nat Methods. 2021;18(2):203– 11.

    Google Scholar 

  11. Woo S, Park J, Lee JY, Kweon IS. Cbam: convolutional block attention module. Proc ECCV. 2018:3–19.

    Google Scholar 

  12. Oktay O, Schlemper J, Le Folgoc L, Lee M, Heinrich M, Misawa K et al. Attention U-net: learning where to look for the pancreas. Proc MIDL. 2022.

    Google Scholar 

  13. Kline TL,Korfiatis P, Edwards ME, Blais JD, Czerwiec FS, Harris PC et al. Performance of an artificial multi-observer deep neural network for fully automated segmentation of polycystic kidneys. J Digit Imaging. 2017;30:442–8.

    Google Scholar 

  14. He X, Hu Z, Dev H, Romano DJ, Sharbatdaran A, Raza SI et al. Test retest reproducibility of organ volume measurements in ADPKD using 3D multimodality deep learning. Acad Radiol. 2023.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anish Raj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Der/die Autor(en), exklusiv lizenziert an Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Raj, A. et al. (2024). Generalizable Kidney Segmentation for Total Volume Estimation. In: Maier, A., Deserno, T.M., Handels, H., Maier-Hein, K., Palm, C., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2024. BVM 2024. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-44037-4_75

Download citation

Publish with us

Policies and ethics