Skip to main content

Data Consistent Variational Networks for Zero-shot Self-supervised MR Reconstruction

  • Conference paper
  • First Online:
Bildverarbeitung für die Medizin 2024 (BVM 2024)

Abstract

Variational Networks are a common approach in deep learning-based accelerated MR reconstruction. Due to their architecture, they may however fail in enforcing data consistency.We propose an adjustment to the Variational Network, integrating an optimization block that ensures consistency with the measured kspace points. We show the superiority of the method for zero-shot self-supervised 3D reconstruction quantitatively on retrospectively undersampled knee-data, and qualitatively in prospectively undersampled MR angiography images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Yaman B, Hosseini SAH, Moeller S, Ellermann J, Uğurbil K, Akçakaya M. Self-supervised learning of physics-guided reconstruction neural networks without fully sampled reference data. Magn Reson Med. 2020;84(6):3172–91.

    Google Scholar 

  2. Yaman B, Hosseini SAH, Akçakaya M. Zero-shot self-supervised learning for MRI reconstruction. ArXiv. 2021.

    Google Scholar 

  3. Aggarwal HK, Mani MP, Jacob M. MoDL: Model-based deep learning architecture for inverse problems. IEEE Trans Med Imaging. 2018;38(2):394–405.

    Google Scholar 

  4. Hammernik K, Klatzer T, Kobler E, Recht MP, Sodickson DK, Pock T et al. Learning a variational network for reconstruction of accelerated MRI data. Magn Reson Med. 2018;79(6):3055–71.

    Google Scholar 

  5. Sriram A, Zbontar J, Murrell T, Defazio A, Zitnick CL, Yakubova N et al. End-to-end variational networks for accelerated MRI reconstruction. Med Image Comput Comput Assist Interv. Springer. 2020:64–73.

    Google Scholar 

  6. Lustig M, Donoho DL, Santos JM, Pauly JM. Compressed sensing MRI. IEEE Signal Process Mag. 2008;25(2):72–82.

    Google Scholar 

  7. Yaman B, Gu H, Hosseini SAH, Demirel OB, Moeller S, Ellermann J et al. Multi-mask self-supervised learning for physics-guided neural networks in highly accelerated magnetic resonance imaging. NMR Biomed. 2022;35(12):e4798.

    Google Scholar 

  8. Uecker M, Lai P, Murphy MJ, Virtue P, Elad M, Pauly JM et al. ESPIRiT: an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA. Magn Reson Med. 2014;71(3):990–1001.

    Google Scholar 

  9. Epperson K, Sawyer AM, Lustig M, Alley M, Uecker M. Creation of fully sampled MR data repository for compressed sensing of the knee. Proc Sec Mag Reson Techn. 2013.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Fürnrohr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Der/die Autor(en), exklusiv lizenziert an Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fürnrohr, F., Wetzl, J., Vornehm, M., Giese, D., Knoll, F. (2024). Data Consistent Variational Networks for Zero-shot Self-supervised MR Reconstruction. In: Maier, A., Deserno, T.M., Handels, H., Maier-Hein, K., Palm, C., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2024. BVM 2024. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-44037-4_81

Download citation

Publish with us

Policies and ethics