Skip to main content

Histologic Dataset of Normal and Atypical Mitotic Figures on Human Breast Cancer (AMi-Br)

  • Conference paper
  • First Online:
Bildverarbeitung für die Medizin 2025 (BVM 2025)

Part of the book series: Informatik aktuell ((INFORMAT))

Included in the following conference series:

  • 80 Accesses

Abstract

Assessment of the density of mitotic figures (MFs) in histologic tumor sections is an important prognostic marker for many tumor types, including breast cancer. Recently, it has been reported in multiple works that the quantity of MFs with an atypical morphology (atypical MFs, AMFs) might be an independent prognostic criterion for breast cancer. AMFs are an indicator of mutations in the genes regulating the cell cycle and can lead to aberrant chromosome constitution (aneuploidy) of the tumor cells. To facilitate further research on this topic using pattern recognition, we present the first ever publicly available dataset of atypical and normal MFs (AMi-Br). For this, we utilized two of the most popular MF datasets (MIDOG 2021 and TUPAC) and subclassified all MFs using a three expert majority vote. Our final dataset consists of 3,720 MFs, split into 832 AMFs (22.4%) and 2,888 normal MFs (77.6%) across all 223 tumor cases in the combined set. We provide baseline classification experiments to investigate the consistency of the dataset, using a Monte Carlo cross-validation and different strategies to combat class imbalance.We found an averaged balanced accuracy of up to 0.806 when using a patch-level data set split, and up to 0.713 when using a patient-level split.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bertram CA, Donovan TA, Bartel A. Mitotic activity: a systematic literature review of the assessment methodology and prognostic value in canine tumors. Vet Pathol. 2024;61(5):752– 64.

    Google Scholar 

  2. Van Dooijeweert C, Van Diest P, Ellis I. Grading of invasive breast carcinoma: the way forward. Virchows Archiv. 2022;480(1):33–43.

    Google Scholar 

  3. Aubreville M, Stathonikos N, Donovan TA et al. Domain generalization across tumor types, laboratories, and species – insights from the 2022 edition of the Mitosis Domain Generalization Challenge. Med Image Anal. 2024;94:103155.

    Google Scholar 

  4. Veta M, Heng YJ, Stathonikos N et al. Predicting breast tumor proliferation from whole-slide images: the TUPAC16 challenge. Med Image Anal. 2019;54:111–21.

    Google Scholar 

  5. Aubreville M, Stathonikos N, Bertram CAet al. Mitosis domain generalization in histopathology images – the MIDOG challenge. Med Image Anal. 2023;84:102699.

    Google Scholar 

  6. Bertram CA, Veta M, Marzahl C et al. Are pathologist-defined labels reproducible? Comparison of the TUPAC16 mitotic figure dataset with an alternative set of labels. Proc MICCAI. 2020:204–13.

    Google Scholar 

  7. Gisselsson D. Classification of chromosome segregation errors in cancer. Chromosoma. 2008;117(6):511–9.

    Google Scholar 

  8. Lashen A, Toss MS, AlsaleemMet al. The characteristics and clinical significance of atypical mitosis in breast cancer. Mod Pathol. 2022;35(10):1341–8.

    Google Scholar 

  9. Ohashi R, Namimatsu S, Sakatani T et al. Prognostic utility of atypical mitoses in patients with breast cancer: A comparative study with Ki67 and phosphohistone H3. J Surg Oncol. 2018;118(3):557–67.

    Google Scholar 

  10. Bertram CA, Bartel A, Donovan TA et al. Atypical mitotic figures are prognostically meaningful for canine cutaneous mast cell tumors. Vet Sci. 2023;11(1):5.

    Google Scholar 

  11. Matsuda Y, Yoshimura H, Ishiwata T et al. Mitotic index and multipolar mitosis in routine histologic sections as prognostic markers of pancreatic cancers: a clinicopathological study. Pancreatology. 2016;16(1):127–32.

    Google Scholar 

  12. Aubreville M, Ganz J, Ammeling J et al. Deep learning-based subtyping of atypical and normal mitoses using a hierarchical anchor-free object detector. Proc BVM. 2023:189–95.

    Google Scholar 

  13. Fick RR, Bertram C, Aubreville M. Improving CNN-based mitosis detection through rescanning annotated glass slides and atypical mitosis subtyping. Proc MIDL. 2024.

    Google Scholar 

  14. Donovan TA, Moore FM, Bertram CAet al. Mitotic figures—normal, atypical, and imposters: a guide to identification. Vet Pathol. 2021;58(2):243–57.

    Google Scholar 

  15. Travaglino A, Raffone A, Santoro A et al. Prognostic significance of atypical mitotic figures in smooth muscle tumors of uncertain malignant potential (STUMP) of the uterus and uterine adnexa. Apmis. 2021;129(4):165–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christof A. Bertram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 Der/die Autor(en), exklusiv lizenziert an Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bertram, C.A. et al. (2025). Histologic Dataset of Normal and Atypical Mitotic Figures on Human Breast Cancer (AMi-Br). In: Palm, C., et al. Bildverarbeitung für die Medizin 2025. BVM 2025. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-47422-5_25

Download citation

Publish with us

Policies and ethics