Abstract
Processing histopathological whole slide images (WSI) leads to massive storage requirements for clinics worldwide. Even after lossy image compression during image acquisition, additional lossy compression is frequently possible without substantially affecting the performance of deep learning-based (DL) downstream tasks. In this paper, we show that the commonly used JPEG algorithm is not best suited for further compression and we propose stain quantized latent compression (SQLC), a novel DL based histopathology data compression approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Fischer M, Neher P,Wald T et al. Learned image compression for HE-stained histopathological images via stain deconvolution. Proc MICCAI. 2024.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 Der/die Autor(en), exklusiv lizenziert an Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature
About this paper
Cite this paper
Fischer, M. et al. (2025). Abstract: Learned Image Compression for HE-stained Histopathological Images via Stain Deconvolution. In: Palm, C., et al. Bildverarbeitung für die Medizin 2025. BVM 2025. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-47422-5_79
Download citation
DOI: https://doi.org/10.1007/978-3-658-47422-5_79
Published:
Publisher Name: Springer Vieweg, Wiesbaden
Print ISBN: 978-3-658-47421-8
Online ISBN: 978-3-658-47422-5
eBook Packages: Computer Science and Engineering (German Language)