Abstract
We discuss the equivalence of simple while-programs S1 and S2 in all datatypes that implement a specification (Σ,E). A sufficient condition is that S1 and S2 are indistinguishable in all program logics HL(Σ’,E) for Σ’ ⊃; Σ. A necessary condition is that for each refinement (Σ’,E’) of (Σ,E) another refinement (Σ*,E*) of (Σ’ ,E’) exists such that S1 and S2 cannot be distinguished in HL(Σ*,E*).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
K.R. Apt, Ten years of Hoare’s Logic, a survey, F.V. Jensen, B.H. Mayoh & K.K. Möller (eds.). Proceedings from 5th Scandinavian Logic Symposium, Aalborg University Press, Aalborg 1979.
J.W. de Bakker, Recursive procedures, Mathematical Centre Tracts 24, Math. Centre Amsterdam 1973.
J.W. de Bakker, Mathematical Theorey of Program Correctness, Prentice Hall International, London 1980.
J.A. Bergstra, J. Tiuryn & J.. Tucker, Floyd’s principle, correctnes theories and program equivalence, Math. Centre report IW 145/80, to appear in T.C.S.
J.A. Bergstra & J.V. Tucker, On the refinement of specifications and Hoare’s logic, Math. Centre report IW 155, Amsterdam 1980.
J.A. Bergstra & J.V. Tucker, Peano’s arithmetic and Hoare’s logic, Math. Centre report IW 160, Amsterdam 1981.
A.R. Meyer & J.Y. Halpern, Axiomatic definitions of programming languages, a theoretical assesment. Proceedings 6th POPL 1979.
J. Tiuryn, private communication, november 1980.
M. Wand, A new incompleteness result for Hoare’s system, J.A.C.M. 25 (1) 1978.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1981 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Bergstra, J.A., Terlouw, J. (1981). A Characterization of Program Equivalence in Terms of Hoare’s Logic. In: Brauer, W. (eds) GI — 11. Jahrestagung. Informatik-Fachberichte, vol 50. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-01089-1_9
Download citation
DOI: https://doi.org/10.1007/978-3-662-01089-1_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-10884-9
Online ISBN: 978-3-662-01089-1
eBook Packages: Springer Book Archive