Skip to main content

A Characterization of Program Equivalence in Terms of Hoare’s Logic

  • Chapter
GI — 11. Jahrestagung

Part of the book series: Informatik-Fachberichte ((INFORMATIK,volume 50))

Abstract

We discuss the equivalence of simple while-programs S1 and S2 in all datatypes that implement a specification (Σ,E). A sufficient condition is that S1 and S2 are indistinguishable in all program logics HL(Σ’,E) for Σ’ ; Σ. A necessary condition is that for each refinement (Σ’,E’) of (Σ,E) another refinement (Σ*,E*) of (Σ’ ,E’) exists such that S1 and S2 cannot be distinguished in HL(Σ*,E*).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K.R. Apt, Ten years of Hoare’s Logic, a survey, F.V. Jensen, B.H. Mayoh & K.K. Möller (eds.). Proceedings from 5th Scandinavian Logic Symposium, Aalborg University Press, Aalborg 1979.

    MATH  Google Scholar 

  2. J.W. de Bakker, Recursive procedures, Mathematical Centre Tracts 24, Math. Centre Amsterdam 1973.

    Google Scholar 

  3. J.W. de Bakker, Mathematical Theorey of Program Correctness, Prentice Hall International, London 1980.

    Google Scholar 

  4. J.A. Bergstra, J. Tiuryn & J.. Tucker, Floyd’s principle, correctnes theories and program equivalence, Math. Centre report IW 145/80, to appear in T.C.S.

    Google Scholar 

  5. J.A. Bergstra & J.V. Tucker, On the refinement of specifications and Hoare’s logic, Math. Centre report IW 155, Amsterdam 1980.

    Google Scholar 

  6. J.A. Bergstra & J.V. Tucker, Peano’s arithmetic and Hoare’s logic, Math. Centre report IW 160, Amsterdam 1981.

    Google Scholar 

  7. A.R. Meyer & J.Y. Halpern, Axiomatic definitions of programming languages, a theoretical assesment. Proceedings 6th POPL 1979.

    Google Scholar 

  8. J. Tiuryn, private communication, november 1980.

    Google Scholar 

  9. M. Wand, A new incompleteness result for Hoare’s system, J.A.C.M. 25 (1) 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bergstra, J.A., Terlouw, J. (1981). A Characterization of Program Equivalence in Terms of Hoare’s Logic. In: Brauer, W. (eds) GI — 11. Jahrestagung. Informatik-Fachberichte, vol 50. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-01089-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-01089-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-10884-9

  • Online ISBN: 978-3-662-01089-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics