Abstract
The Gröbner basis (G-basis) method in the design of experiments was introduced by Pistone & Wynn (1996) and followed up by several strands of work one in particular addressing real practical applications: Holliday, Pistone, Riccomagno & Wynn (1997). This paper continues this latter series.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Caboara, M., Pistone, G., Riccomagno, E. & Wynn, H. P. (1997). The fan of an experimental design. Annals of Statistics (submitted).
Caboara, M. & Robbiano, L. (1997) Families of Ideals in Statistics Proc. ISSAC ’97, ACM, 404–417.
Collart, S., Kalkbrener, M. & Mall, D. (1997) Converting bases with the Gröbner walk J. Symb. Comput., 24, 465–469.
D. Cox, J. Little & D. O’Shea(1997). Ideal, Varieties, and Algorithms, 2 edition. New York: Springer-Verlag.
Holliday, T., Pistone, T., Riccomagno & Wynn H. P. (1997). The Application of Algebraic Geometry to the Analysis of Designed Experiments: a case study. Computational Statistics, in press.
Mora, T. & Robbiano, L. (1988). The Gröbner fan of an ideal J. Symb. Comput., 6, 183–208.
Pistone, G. & Wynn, H. P. (1996). Generalised confounding with Gröbner bases. Biometrika, 83, 653–666.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1998 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bates, R.A., Giglio, B., Riccomagno, E., Wynn, H.P. (1998). Gröbner Basis Methods in Polynomial Modelling. In: Payne, R., Green, P. (eds) COMPSTAT. Physica, Heidelberg. https://doi.org/10.1007/978-3-662-01131-7_18
Download citation
DOI: https://doi.org/10.1007/978-3-662-01131-7_18
Publisher Name: Physica, Heidelberg
Print ISBN: 978-3-7908-1131-5
Online ISBN: 978-3-662-01131-7
eBook Packages: Springer Book Archive