Skip to main content

Robust Factorization of a Data Matrix

  • Conference paper
COMPSTAT

Abstract

In this note we show how the entries of a data matrix can be approximated by a sum of row effects, column effects and interaction terms in a robust way using a weighted L 1 estimator. We discuss an algorithm to compute this fit, and show by a simulation experiment and an example that the proposed method can be a useful tool in exploring data matrices. Moreover, a robust biplot is produced as a byproduct.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Croux, C. & Ruiz-Gazen, A. (1996). A fast algorithm for robust principal components based on projection pursuit. In: Proceedings in Computational Statistics, COMPSTAT 1996 (ed. A. Prat), 211–216. Heidelberg: Physica-Verlag.

    Google Scholar 

  • de Falguerolles, A. & Francis, B. (1992). Algorithmic approaches for fitting bilinear models. In: Computational Statistics, COMPSTAT1992 (ed Y. Dodge & J. Whittaker), Vol. 1, 77–82. Heidelberg: Physica-Verlag.

    Google Scholar 

  • Gabriel, K.R. (1978). Least squares approximation of matrices by additive and multiplicative models. Journal of the Royal Statistical Society B, 40(2), 186–196.

    MathSciNet  MATH  Google Scholar 

  • Gollob, H. F. (1968). A statistical model which combines features of factor analytic and analysis of variance techniques, Psychometrika, 33, 73–116.

    Article  MathSciNet  MATH  Google Scholar 

  • Rousseeuw, P.J. & van Zomeren, B.C. (1990). Unmasking multivariate outliers and leverage points. Journal of the American Statistical Association, 85, 633–639.

    Article  Google Scholar 

  • Ukkelberg, A. & Borgen, O. (1993). Outlier detection by robust alternating regressions. Analytica Chimica Acta, 277, 489–494.

    Article  Google Scholar 

  • Wold, H. (1966). Nonlinear estimation by iterative least squares procedures. In: A Festschrift for F. Neyman, (ed. F.N. David), 411–444. New York: Wiley and Sons.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Croux, C., Filzmoser, P. (1998). Robust Factorization of a Data Matrix. In: Payne, R., Green, P. (eds) COMPSTAT. Physica, Heidelberg. https://doi.org/10.1007/978-3-662-01131-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-01131-7_29

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-7908-1131-5

  • Online ISBN: 978-3-662-01131-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics