Skip to main content

On the Convergence of Iterated Random Maps with Applications to the MCEM Algorithm

  • Conference paper
COMPSTAT
  • 739 Accesses

Abstract

Optimization via simulation is a promising technique to solve maximum likelihood problems in incomplete data models. Among the techniques proposed to date to solve this problem, the MCEM algorithm proposed by Wei & Tanner (1991) plays a preeminent role. Perhaps surprisingly, very little is known on the convergence of this algorithm and on the strategies to monitor this convergence. A particular emphasis is given on the stability issue (which is not guaranteed in the original proposal by Wei & Tanner, 1991). A random truncation strategy, inspired by Chen’s truncation method for stochastic approximation algorithms, is proposed and analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Chen, H.F., Guo, L. & Gao, A.J. (1988). Convergence and robustness of the Robbins-Monro algorithm truncated at randomly varying bounds. Stoch. Proces. Applic., 27, 217–231.

    Article  MathSciNet  MATH  Google Scholar 

  • Dempster, A., Laird, N. & Rubin, D. (1977). Maximum-likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society B, 39, 1–38.

    MathSciNet  MATH  Google Scholar 

  • Hale (1987). Asymptotic behavior of dissipative systems. Providence: American Mathematical Society.

    Google Scholar 

  • Haraux, A., (1991).Systemes dynamiques dissipatifs et applications. Paris: Masson.

    MATH  Google Scholar 

  • Kushner, H. J. & Yin, G. G. (1997). Stochastic approximation algorithms and applications. New York: Springer Verlag.

    MATH  Google Scholar 

  • Meyn, S.P. & Tweedie, R.L. (1993). Markov chains and stochastic stability. New York: Springer Verlag.

    Book  MATH  Google Scholar 

  • Robert, C., (1996). Methoden de Monte-Carlo par chaines de Markov. Economica.

    Google Scholar 

  • Roberts, G. O. & Tweedie, R. L. (1996). Geometric convergence and central limit theorems for multidimensional Metropolis-Hasting algorithms. Biometrika, 83, 95–100.

    Article  MathSciNet  MATH  Google Scholar 

  • Shapiro, A. & Wardi, Y. (1996). Convergence analysis of stochastic algorithms. Mathematics of operations research, 21, 615–628.

    Article  MathSciNet  MATH  Google Scholar 

  • Wei, G. C. G. & Tanner, M. A. (1991). A Monte Carlo implementation of the EM algorithm and the poor’s man data augmentation algorithms. J. Amer. Statist. Assoc., 85, 699–704.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fort, G., Moulines, E., Soulier, P. (1998). On the Convergence of Iterated Random Maps with Applications to the MCEM Algorithm. In: Payne, R., Green, P. (eds) COMPSTAT. Physica, Heidelberg. https://doi.org/10.1007/978-3-662-01131-7_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-01131-7_41

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-7908-1131-5

  • Online ISBN: 978-3-662-01131-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics