Skip to main content

A Wavelet Approach to Functional Principal Component Analysis

  • Conference paper
COMPSTAT

Abstract

The aim of this paper is to approximate the estimates in the principal component analysis of a continuous time stochastic process (functional PCA) by using wavelet methods. A short review of estimating in the functional PCA leads to the problem of solving the integral equation with the covariance function as kernel. An estimating procedure based on wavelet methods is then provided to obtain approximate estimates. Wavelet methods and multiresolution analysis (MRA) are jointly considered. Furthermore, MRA provides an approximating framework to estimate functional PCA when data are observed at discrete knots on a real interval. This wavelet approach is tested by simulating at discrete knots sample functions of Brownian motion. The PCA of this process is compared with those estimated by means of the wavelet approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aguilera, A.M., Gutiérrez, R., Ocaña, F.A. & Valderrama, M.J. (1995). Computational approaches to estimation in the principal component analysis of a stochastic process. Applied Stochastic Models & Data Analysis, 11, 279–299.

    Article  MATH  Google Scholar 

  • Aguilera, A.M., Gutiérrez, R. & Valderrama, M.J. (1996). Approximation of estimators in the PCA of a stochastic process using B-splines. Commun. Statist.-Simula., 25, 671–690.

    Article  MATH  Google Scholar 

  • Alpert, B.K. (1992). Wavelets and other bases for fast numerical linear algebra. In: Wavelets: A tutorial in theory and applications, (ed. C.K. Chui), 181–216. London: Academic Press.

    Google Scholar 

  • Cambanis, S. & Masry, E. (1994). Wavelet approximation of deterministic and random signals: convergence properties and rates. IEEE Transactions on Information Theory, 40, 1013–1029.

    Article  MathSciNet  MATH  Google Scholar 

  • Chui, C.K. (1990). An Introduction to Wavelets. San Diego: Academic Press.

    Google Scholar 

  • Daubechies, I. (1988). Orthonormal bases of compactly supported wavelets. Communications on Pure and Applied Mathematics, 41, 909–996.

    Article  MathSciNet  MATH  Google Scholar 

  • Daubechies, I. (1993). Orthonormal bases of compactly supported wavelets II. Variations on a theme. SIAM Journal of Mathematical Analysis., 24, 499–519.

    Article  MathSciNet  MATH  Google Scholar 

  • Dauxois, J., Pousse, A. & Romain, Y. (1982). Asymptotic theory for the principal component analysis of a vector random function: some applications to statistical inference. J. Mult. Anal., 12, 136–154.

    Article  MathSciNet  MATH  Google Scholar 

  • Deville, J.C. (1974). Méthodes statistiques et numériques de l’analyse harmonique. Annales de I’INSEE, 15, 3–101.

    MathSciNet  Google Scholar 

  • Morettin, P.A. (1996). From Fourier to wavelet analysis of time series. In: COMPSTAT96 Proceedings in Computational Statistics (ed. A. Prat), 111–122. Heidelberg: Physica-Verlag.

    Google Scholar 

  • Ramsay, J.O. & Silverman, B.W. (1997). Functional Data Analysis. New York: Springer-Verlag.

    MATH  Google Scholar 

  • Sweldens, W. & Piessens, R. (1993). Calculation of the wavelet decomposition using quadrature formulae. In: Wavelets: An Elementary Treatment of Theory and Applications (ed. T.H. Koornwinder), 139–160. Singapore: World Scientific.

    Google Scholar 

  • Wong, E. & Hajek, B.K. (1985). Stochastic Processes in Engineering Systems. New York: McGraw Hill.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ocaña, F.A., Valenzuela, O., Aguilera, A.M. (1998). A Wavelet Approach to Functional Principal Component Analysis. In: Payne, R., Green, P. (eds) COMPSTAT. Physica, Heidelberg. https://doi.org/10.1007/978-3-662-01131-7_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-01131-7_57

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-7908-1131-5

  • Online ISBN: 978-3-662-01131-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics