Skip to main content

Tetrahedra Based Volume Visualization

  • Chapter

Abstract

Volume Visualization techniques have advanced considerably since the first international symposium held on this topic eight years ago.

This paper briefly reviews the techniques proposed for the visualization of irregular (or scattered) volume datasets. In particular, methods which adopt simplicial decompositions of E 3 space are considered, and this choice is justified both in terms of modeling and visualization. Simplicial complexes are powerful and robust geometric structures, and a number of efficient visualization algorithms have been proposed. We show that simplicial cells (or simply tetrahedral cells since our target is 3D space) may be conceived as being the unifying kernel primitive for the visualization of not-regular meshes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. B. Chandrajit, V. Pascucci, and D. R. Schikore, Fast isocontouring for improved interactivity, 1996 IEEE Volume Visualization Symposium (1996), 39–46.

    Google Scholar 

  2. J. F. Blinn, Light reflection functions for simulation of clouds and dusty surfaces, Computer Graphics (SIGGRAPH ’82) 16:3 (1982), 21–29.

    Google Scholar 

  3. Y. Chiang and C. T. Silva, I/O optimal isosurface extraction, IEEE Visualization ’87 Proceedings, (R. YAGEL AND H. HAGEN, eds.), 1997.

    Google Scholar 

  4. P. Cignoni, L. de Floriani, C. Montani, E. Puppo, and R. Scopigno, Multiresolution modeling and rendering of volume data based on simplicial complexes, Proceedings of 1994 Symposium on Volume Visualization, ACM Press, 1994, 19–26.

    Google Scholar 

  5. P. Cignoni, C. Montani, E. Puppo, and R. Sgopigno, Multiresolution Representation and Visualization of Volume Data, Technical Report C97–05, Istituto CNUCE — C.N.R., Pisa, Italy, January 1997.

    Google Scholar 

  6. P. Cignoni, C. Montani, E. Puppo, and R. Scopigno, Speeding up isosurface extraction using interval trees, IEEE Trans. on Visualization and Comp. Graph. 3:2 (1997).

    Google Scholar 

  7. P. Cignoni, C. Montani, D. Sarti, and R. Scopigno, On the optimization of projective volume rendering, Visualization in Scientific Computing 1995, Springer, Wien, 1995, 58–71.

    Google Scholar 

  8. L. DE Floriani, P. Marzano, and E. Puppo, Multiresolution models for topographic surface description, The Visual Computer, 12:7 (1996), 317–345.

    Google Scholar 

  9. R. A. Drebin, L. Carpenter, and P. Hanrahan, Volume rendering, Computer Graphics (SIGGRAPH ’88 Proceedings) 22 (1988), 65–74.

    Article  Google Scholar 

  10. H. Edelsbrunner, An acyclicity theorem for cell complexes in d dimensions, Combinatorica 10 (1990), 251–260.

    Article  MathSciNet  MATH  Google Scholar 

  11. S. F. Gibson, Beyond volume rendering: visualization, haptic exploration, and physical modeling of voxel-based objects, Visualization in Scientific Computing `95, Springer, Wien, 1995, 10–24.

    Google Scholar 

  12. R. S. Gallagher, Span filter: an optimization scheme for volume visualization of large finite element models, IEEE Visualization ’81 Proc. (1991), 68–75.

    Google Scholar 

  13. T. A. Galyean and J. F. Hughes, Sculpting: an interactive volumetric modeling technique, Computer Graphics 25:4 (1991), 264–274.

    Article  Google Scholar 

  14. M. R. Garey and D. S. Johnson, Computers and intractability: A guide to the theory of NP-completeness. W. H. Freeman and Company, New York, 1979.

    MATH  Google Scholar 

  15. M. P. Garrity, Raytracing irregular volume data, Computer Graphics (San Diego Workshop on Volume Visualization), 24:5 (1990), 35–40.

    Google Scholar 

  16. C. Giertsen, Volume visualization on sparse irregular meshes, IEEE Computer Graphics & Applications (1992), 40–48.

    Google Scholar 

  17. B. Guo, A multiscale model for structured-based volume rendering, IEEE Trans. on Visualization and Computer Graphics 1:4 (1995), 291–301.

    Article  Google Scholar 

  18. B. Hamann and J. L. Chen, Data point selection for piecewise trilinear approximation, Computer Aided Geometric Design 11 (1994), 477–489.

    Article  MathSciNet  MATH  Google Scholar 

  19. T. Itoh and K. Koyamada, Automatic isosurface propagation using an Extrema Graph and sorted boundary cell lists, IEEE Trans. on Vis. and Comp. Graph. 1:4 (1995), 319–327.

    Article  Google Scholar 

  20. J. T. Kajiya and Brian P. von Herzen, Ray tracing volume densities, Computer Graphics (SIGGRAPH ’84 Proceedings) 18 (1984), 165–174.

    Article  Google Scholar 

  21. A. Lerios, C. D. Garfinkle, and M. Levoy, Feature-based volume metamorphosis, Comp. Graph. (Siggraph ’85), ACM Press, 1995, 449–464.

    Google Scholar 

  22. M. Levoy, Display of surfaces from volume data, IEEE Computer Graphics and Applications 8:3 (1988), 29–37.

    Article  Google Scholar 

  23. Y. Livnat, H. V. Shen, and C. R. Johnson, A near optimal isosurface extraction algorithm for structured and unstructured grids, IEEE Trans. on Vis. and Comp. Graph. 2:1 (1996), 73–84.

    Google Scholar 

  24. W. E. Lorensen and H. E. Cline, Marching cubes: A high resolution 3D surface construction algorithm, Computer Graphics (SIGGRAPH ’87 Proceedings) 21 (1987), 163–170.

    Article  Google Scholar 

  25. N. Max, Optical models for direct volume rendering, IEEE Trans. on Vis. and Comp. Graph. 1:2 (1995), 99–108.

    Article  Google Scholar 

  26. N. Max, P. Hanrahan, and R. Crawfis, Area and volume coherence for efficient visualization of 3D scalar functions, Computer Graphics (San Diego Workshop on Volume Visualization), 24:5 (1990), 27–33.

    Article  Google Scholar 

  27. E. Puppo and R. Scopigno, Simplification, LOD,and Multiresolution - Principles and Applications, Technical Report C97–12, CNUCE, C.N.R., Pisa (Italy), June 1997. (also in: EUROGRAPHICS’97 Tutorial Notes, Eurographics Association, Aire-la-Ville (CH)).

    Google Scholar 

  28. K. J. Renze and J. H. Oliver, Generalized unstructured decimation, IEEE C.G.&A. 16:6 (1996), 24–32.

    Google Scholar 

  29. P. Sabella, A rendering algorithm for visualizing 3D scalar fields, Computer Graphics (SIGGRAPH ’88 Proceedings) 22:4 (1988), 51–58.

    Google Scholar 

  30. W. J. Schroeder, J. A. Zarge, and W. E. Lorensen, Decimation of triangle meshes, ACM Computer Graphics (SIGGRAPH ’82 Proceedings) 26 (1992), 65–70.

    Article  Google Scholar 

  31. P. Shirley and A. Tuchman, A polygonal approximation to direct scalar volume rendering, Computer Graphics (San Diego Workshop on Volume Visualization), 24:5 (1990), 63–70.

    Google Scholar 

  32. C. T. Silva and J. S. B. Mitchell, The lazy sweep ray casting algorithm for rendering irregular grids, Technical Report 11794/3600, State University of New York, Stony Brook, 1997.

    Google Scholar 

  33. C.T. Silva, J. Mitchell, and A. Kaufman, Fast rendering of irregular grids, Proceedings 1996 Symp. on Volume Visualization (1996), 15–22.

    Google Scholar 

  34. D. Speray, S. Kennon, Volume probes: Interactive data exploration on arbitrary grids, Computer Graphics (San Diego Workshop on Volume Visualization), 24:5 (1990), 5–12.

    Google Scholar 

  35. C. Stein, B. Becker, and N. Max, Sorting and Hardware Assisted Rendering for Volume Visualization, Proceedings of 1994 Symposium on Volume Visualization, ACM Press, 1994, 83–90.

    Google Scholar 

  36. P. Su and R. L. S. Drysdale, A comparison of sequential delaunay triangulation algorithms, 11th ACM Computational Geometry Conf. Proc. (Vancouver, Canada), ACM Press, 1995, 61–70.

    Google Scholar 

  37. A. van Gelder and J. Wilhelms, Rapid exploration of curvilinear grids using direct volume rendering, IEEE Visualization ’83 Proceedings, 1993, 70–77.

    Google Scholar 

  38. J. Wilhelms and A. von Gelder, Octrees for faster isosurface generation, ACM Computer Graphics 24:5 (1990), 57–62.

    Article  Google Scholar 

  39. J. Wilhelms, A. van Gelder, P. Tarantino, and J. Gibbs, Hierarchical and parallelizable direct volume rendering for irregular and multiple grids, Visualization ’86 Proceedings, IEEE Press, 1996, 57–64.

    Google Scholar 

  40. J. Wilhelms and A. von Gelder, Octrees for faster isosurface generation, ACM Transaction on Graphics 11:3 (1992), 201–227.

    Article  MATH  Google Scholar 

  41. P. L. Williams, Visibility ordering of meshed polyhedra, ACM Transaction on Graphics 11:2 (1992), 103–126.

    Article  MATH  Google Scholar 

  42. P. L. Williams, Interactive splatting of nonrectilinear volumes, A.E. Kaufman and G.M. Nielson, editors, Visualization ’82 Proceedings, IEEE Computer Society Press, 1992, 37–45.

    Google Scholar 

  43. P. L. Williams, Interactive Direct Volume Rendering of Curvilinear and Unstructured Data. PhD thesis, University of Illinois at Urbana-Champaign, 1993.

    Google Scholar 

  44. R. Yagel, D. M. Reed, A. Law, P. W. Shi, and N. Shareef, Hardware assisted volume rendering of unstructured grids by incremental slicing, Proceedings 1996 Symp. on Volume Visualization, 1996, 55–62.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cignoni, P., Montani, C., Scopigno, R. (1998). Tetrahedra Based Volume Visualization. In: Hege, HC., Polthier, K. (eds) Mathematical Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03567-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03567-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08373-0

  • Online ISBN: 978-3-662-03567-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics