Abstract
Geodesic curves are the fundamental concept in geometry to generalize the idea of straight lines to curved surfaces and arbitrary manifolds. On polyhedral surfaces we introduce the notion of discrete geodesic curvature of curves and define straightest geodesics. This allows a unique solution of the initial value problem for geodesics, and therefore a unique movement in a given tangential direction, a property not available in the well-known concept of locally shortest geodesics.
An immediate application is the definition of parallel translation of vectors and a discrete Runge-Kutta method for the integration of vector fields on polyhedral surfaces. Our definitions only use intrinsic geometric properties of the polyhedral surface without reference to the underlying discrete triangulation of the surface or to an ambient space.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
A. D. Aleksandrov and V. A. Zalgaller, Intrinsic geometry of surfaces, Translation of Mathematical Monographs, vol. 15, AMS, 1967.
S. B. Alexander and R. L. Bishop, Comparison theorems for curves of bounded geodesic curvature in metric spaces of curvature bounded above, Diff. Geom. Appl. 6: 1 (1996), 67–86.
M. P. Do Carmo, Differential geometry of curves and surfaces, Prentice-Hall, 1976.
E. Dijkstra, A note on two problems in connection with graphs, Numer. Math. 1 (1959), 269–271.
C. Gunn, A. Ortmann, Ü. Pinkall, K. Polthier, and Ü. Schwarz, Oorange - a visualization environment for mathematical experiments, Visualization and Mathematics (H.-C. HEGE AND K. POLTHIER, eds. ), Springer Verlag, 1997.
J. S. B. Mitchell, D. M. Mount, and C. H. Papadimitriou, The discrete geodesic problem, SIAM J. Comput. 16: 4 (1987), 647–668.
A. V. Pogorelov, Quasigeodesic lines on a convex surface, Amer. Math. Soc. Transi. I. Ser. 6: 72 (1952), 430–473.
K. Polthier, M. Schmies, M. Steffens, and C. Teitzel, Geodesics and Waves, ACM Siggraph Video Review 120 (1997).
Y. G. Reshetnyak, Geometry IV, Encyclopaedia of Math. Sci., vol. 70, ch. 1. Two-Dimensional Manifolds of Bounded Curvature, Springer Verlag, 1993, pp. 3–164.
M. Sharir and A. Schorr, On shortest paths in polyhedral space, SIAM J. Comput. 15: 1 (1986), 193–215.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1998 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Polthier, K., Schmies, M. (1998). Straightest Geodesics on Polyhedral Surfaces. In: Hege, HC., Polthier, K. (eds) Mathematical Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03567-2_11
Download citation
DOI: https://doi.org/10.1007/978-3-662-03567-2_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-08373-0
Online ISBN: 978-3-662-03567-2
eBook Packages: Springer Book Archive