Skip to main content

Visualizing Poincaré Maps together with the Underlying Flow

  • Chapter
Mathematical Visualization

Abstract

We present a set of advanced techniques for the visualization of 2D Poincaré maps. Since 2D Poincaré maps are a mathematical abstraction of periodic or quasi-periodic 3D flows, we propose to embed the 2D visualization with standard 3D techniques to improve the understanding of the Poincaré maps. Methods to enhance the representation of the relation xP(x), e.g., the use of spot noise, are presented as well as techniques to visualize the repeated application of P, e.g., the approximation of P as a warp function. It is shown that animation can be very useful to further improve the visualization. For example, the animation of the construction of Poincaré map P is a very intuitive visualization. During the paper we present a set of examples which demonstrate the usefulness of our techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. H. Abraham and C. D. Shaw, Dynamics — the geometry of behavior, 2nd ed., Addison-Wesley, 1992.

    Google Scholar 

  2. Advanced Visual System Inc, Avs developers guide,release 4, May 1992.

    Google Scholar 

  3. V. I. Arnold, Ordinary differential equations, M.I.T. Press, Cambridge, MA, 1973.

    MATH  Google Scholar 

  4. D. K. Arrowsmith and C. A. Place, An introduction to dynamical systems, Cambridge University Press, 1990.

    Google Scholar 

  5. T. Beier and S. Neely, Feature-based image metamorphosis, Computer Graphics (SIGGRAPH ‘82 Proceedings) (E. E. CATMULL, ed.), vol. 26, July 1992, pp. 35–42.

    Google Scholar 

  6. E. Doedel, Software for continuation and bifurcation problems in ordinary differential equations (auto 86 user manual), 2nd ed., February 1986, See also URL http://ute.usi.utah.edu/software/math/automan.html.

    Google Scholar 

  7. J. H. HUBBARD AND B. H. WEST, Differential equations: A dynamical systems approach: Ordinary differential equations, Texts in Applied Mathematics, vol. 5, Springer, 1991.

    Google Scholar 

  8. J. P. M. Hultquist, Constructing stream surfaces in steady 3d vector fields, Proceedings Visualization ‘82, October 1992, pp. 171–177.

    Google Scholar 

  9. H. Löffelmann and E. Gröller, DynSys3D: A workbench for developing advanced visualization techniques in the field of three-dimensional dynamical systems, Proceedings of The Fifth International Conference in Central Europe on Computer Graphics and Visualization ‘87 (WSCG ‘87) (N. Thalmann and V. Skala, eds.), Plzen, Czech Republic, February 1997, pp. 301–310.

    Google Scholar 

  10. H. Löffelmann, L. Mroz, and E. Gröller, Hierarchical streamarrows for the visualization of dynamical systems, Accepted for publication at the 8th EG Workshop on Visualization in Scientific Computing, Boulogne sur Mer, France, April 1997.

    Google Scholar 

  11. H.-O. Peitgen, H. Jürgens, and D. Saupe, Chaos and fractals - new frontiers of science, Springer, 1992.

    Google Scholar 

  12. H. Poincarf, Les méthodes nouvelles de la mécanique céleste (3 vols.), Gauthier-Villars, Paris, 1899.

    Google Scholar 

  13. S. H. Strogatz, Nonlinear dynamics and chaos: with applications to physics, biology, chemistry,and engineering, Addison-Wesley, 1994.

    Google Scholar 

  14. A. A. Tsonis, Chaos - from theory to applications, Plenum Press, 1992.

    Google Scholar 

  15. S. Wiggins, Introduction to applied nonlinear dynamical systems and chaos, 3rd ed., Texts in Applied Mathematics, vol. 2, Springer, 1996.

    Google Scholar 

  16. J. J. van Wijk, Spot noise, Proceedings SIGGRAPH ‘81, July 1991, pp. 309–318.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Löffelmann, H., Kučera, T., Gröller, E. (1998). Visualizing Poincaré Maps together with the Underlying Flow. In: Hege, HC., Polthier, K. (eds) Mathematical Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03567-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03567-2_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08373-0

  • Online ISBN: 978-3-662-03567-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics