Skip to main content

Efficient Visualization of Data on Sparse Grids

  • Chapter
Mathematical Visualization

Abstract

Sparse grids are nowadays frequently used in numerical simulation. With their help the number of unknown in discrete PDE or approximation problems can drastically be decreased. On sparse grids in d space dimensions O(Nlog(N)d−1) nodes are required to achieve nearly the same approximation quality for sufficiently smooth data as on a standard finite difference grid with N d nodes. This allows numerical methods with small error tolerances on a corresponding very fine mesh width. Mapping the complete sparse grid data on an N d standard grid in order to analyse them visually would burst a currently available work station storage for large O(N log(N)d−1) numbers of nodal values provided by numerical code on a sparse grid. We present an efficient, procedural approach to sparse grids for the visual post-processing. A procedural interface addresses data on grid cells only temporarily, only if actually requested by the visualization methods. The cell access procedures extract local numerical data directly from the users sparse grid data base. No additional memory is needed. The procedural approach is combined with a multiresolution strategy based on a recursive traversal of the grid hierarchy. It includes hierarchical searching for features such as isosurfaces and a locally adaptive stopping on coarser grids in areas of sufficient smoothness. This data smoothness corresponds to a user prescribed error tolerance. Examples underline the benefits of the presented approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.-J. Bungartz, Dünne Gitter und deren Anwendung bei der adaptiven Lösung der dreidimensionalen Poisson—Gleichung, Ph.D. thesis, Technische Universität München, 1992.

    Google Scholar 

  2. H.-J. Bungartz, M. Griebel, D. Roschke, and C. Zenger, Pointwise convergence of the combination technique for the laplace equation, East-West Journal of Numerical Mathematics 2: 1 (1994), 21–45.

    MathSciNet  MATH  Google Scholar 

  3. P. Cignoni, L. DE Floriani, C. Montani, E. Puppo, AND R. Scopigno, Multiresolution modeling and visualization of volume data based on simplicial complexes, Proceedings of the Visualization’95, 1995, pp. 19–26.

    Google Scholar 

  4. J. Cornhill, E. Fayyad, R. Shekhar, and R. Yagel, Octree-based decimation of marching cubes surfaces, Proceedings of the Visualization’96, 1996.

    Google Scholar 

  5. D. S. Dyer, A dataflow toolkit for visualization, IEEE CG and A 10: 4 (1990), 60–69.

    Google Scholar 

  6. A. V. Gelder, J. Gibbs, and J. Wilhelms, Hierarchical and parallelizable direct volume rendering for irregular and multiple grids, Proceedings of the Visualization’96, 1996.

    Google Scholar 

  7. M. Griebel, Eine Kombinationsmethode für die Lösung von Dünngitter-Problemen auf Multiprozessor-Maschinen, Numerische Algorithmen auf Transputer-Systemen (W. Bader, Rannacher, ed. ), Teubner, 1992, pp. 6678.

    Google Scholar 

  8. M. Griebel and W. Huber, Turbulence simulation on sparse grids using the combination methods, Parallel Computational Fluid Dynamics, New Algorithms and Applications (N. Satofuka, J. Periaux, and A. Ecer, eds. ), North-Holland, 1995, pp. 75–84.

    Google Scholar 

  9. M. Griebel and V. Thurner, The efficient solution of fluid dynamics problems by the combination technique, Int. J. Num. Meth. for Heat and Fluid Flow 5: 3 (1993), 251–269.

    Article  MathSciNet  Google Scholar 

  10. M. H. Gross and R. G. Staadt, Fast multiresolution surface meshing, Proceedings of the Visualization’95, 1995, pp. 135–142.

    Google Scholar 

  11. R. B. Haber, B. Lucas, and N. Collins, A data model for scientific visualization with provisions for regular and irregular grids, Proc. IEEE Visualization ‘81, 1991.

    Google Scholar 

  12. U. Lang, R. Lang, and R. Ruhle, Integration of visualization and scientific calculation in a software system, Proc. IEEE Visualization ‘81, 1991.

    Google Scholar 

  13. D. Laur and P. Hanrahan, Hierarchical splatting: A progressive refinement algorithm for volume rendering, IEEE CG and A 25: 4 (1991), 285–288.

    Google Scholar 

  14. W. Lorensen and H. Cline, Marching cubes: A high resolution 3d surface construction algorithm, ACM Computer Graphics 21: 4 (1987), 163–169.

    Article  Google Scholar 

  15. B. Lucas and ET. AL., An architecture for a scientific visualization system, Proc. IEEE Visualization ‘82, 1992.

    Google Scholar 

  16. R. Neubauer, M. Ohlberger, M. Rumpf, and R. Schwörer, Efficient visualization of large scale data on hierarchical meshes, Visualization in Scientific Computing ‘87 (W. Lefer and M. Grave, eds. ), Springer, 1997.

    Google Scholar 

  17. M. Ohlberger and M. Rumpf, Hierarchical and adaptive visualization on nested grids, to appear in Computing (1997).

    Google Scholar 

  18. M. Rumpf, A. Schmidt, and K. G. Siebert, Functions defining arbitrary meshes a flexible interface between numerical data and visualization routines, Computer Graphics Forum 15: 2 (1996), 129–141.

    Article  Google Scholar 

  19. L. A. Treinish, Data structures and access software for scientific visualization, Computer Graphics 25 (1991), 104–118.

    Google Scholar 

  20. C. Upson and ET. AL., The application visualization system: A computational environment for scientific visualization, IEEE CG and A 9: 4 (1989), 30–42.

    Google Scholar 

  21. J. Wilhelms and A. van Gelder, Octrees for faster isosurface generation, ACM Trans. Graph. 11: 3 (1992), 201–227.

    Article  MATH  Google Scholar 

  22. C. Zenger, Sparse grids, Parallel Algorithms for Partial Differential Equations: Proceedings of the Sixth GAMM-Seminar, Kiel, Jan. 1990 (Hackbusch, ed.), Notes on Numerical Fluid Mechanics, vol. 31, Vieweg, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Heußer, N., Rumpf, M. (1998). Efficient Visualization of Data on Sparse Grids. In: Hege, HC., Polthier, K. (eds) Mathematical Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03567-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03567-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08373-0

  • Online ISBN: 978-3-662-03567-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics