Abstract
Radial basis functions provide powerful meshless methods for multivariate interpolation from scattered data in arbitrary space dimension. This tutorial first explains the basic features of radial basis function interpolation, including its optimality properties and available error estimates, before critical aspects concerning its stability are discussed. The remainder of this contribution is then devoted to related techniques in scattered data modelling other than plain interpolation. To this end, least squares approximation and multiresolution techniques are explained, and recent progress concerning scattered data filtering is reported.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
K. Ball. Eigenvalues of Euclidean distance matrices. J. Approx. Theory 68, 1992, 74–82.
K. Ball, N. Sivakumar, and J. D. Ward. On the sensitivity of radial basis interpolation to minimal distance separation. J. Approx. Theory 8, 1992, 401–426.
Å. Bjørck and G. H. Golub. Iterative refinement of linear least squares solutions by Householder transformation. BIT 7, 1967, 322–337.
M. D. Buhmann. Radial basis functions. Acta Numerica, 2000, 1–38.
Y. D. Burago and V. A. Zalgaller. Geometric Inequalities. Springer, Berlin, 1988.
J. H. Conway and N. J. A. Sloane. Sphere Packings, Lattices and Groups. Springer, New York, 1993.
J. Duchon. Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces. R.A.I.R.O. Analyse Numériques 10, 1976, 5–12.
J. Duchon. Splines minimizing rotation-invariant semi-nor ms in Sobolev spaces. Constructive Theory of Functions of Several Variables, W. Schempp and K. Zeller (eds.), Springer, Berlin, 1977, 85–100.
J. Duchon. Sur l’erreur d’interpolation des fonctions de plusieurs variables par les D m-splines. R.A.I.R.O. Analyse Numériques 12, 1978, 325–334.
N. Dyn. Interpolation of scattered data by radial functions. Topics in Multivariate Approximation, C. K. Chui, L. L. Schumaker, and F. I. Utreras (eds.), Academic Press, New York, 1987, 47–61.
N. Dyn. Interpolation and approximation by radial and related functions. Approximation Theory VI, Vol. 1, C. K. Chui, L. L. Schumaker, and J. D. Ward (eds.), Academic Press, New York, 1989, 211–234.
M. S. Floater and A. Iske. Multistep scattered data interpolation using compactly supported radial basis functions. J. Comput. Appl. Math. 73, 1996, 65–78.
M.S. Floater and A. Iske. Thinning algorithms for scattered data interpolation. BIT 38, 1998, 705–720.
C. Gotsman, S. Gumhold, and L. Kobbelt. Simplification and Compression of 3D Meshes. This volume.
K. Guo, S. Hu, and X. Sun. Conditionally positive definite functions and Laplace-Stieltjes integrals. J. Approx. Theory 74, 1993, 249–265.
R. L. Hardy. Multiquadric equations of topography and other irregular surfaces. J. Geophys. Res. 76, 1971, 1905–1915.
D.S. Hochbaum. Approximation Algorithms for NP-hard Problems. PWS Publishing Company, Boston, 1997.
A. Iske. Charakterisierung bedingt positiv deûniter Funktionen für multivariate Interpolationsmethoden mit radialen Basisfunktionen. Dissertation, Universität Göttingen, 1994.
A. Iske. Characterization of function spaces associated with conditionally positive definite functions. Mathematical Methods for Curves and Surfaces, M. Daehlen, T. Lyche, and L. L. Schumaker (eds.), Vanderbilt University Press, Nashville, 1995, 265–270.
A. Iske. Reconstruction of functions from generalized Hermite-Birkhoff data. Approximation Theory VIII, Vol. 1: Approximation and Interpolation, C. K. Chui and L. L. Schumaker (eds.), World Scientific, Singapore, 1995, 257–264.
A. Iske. Hierarchical scattered data filtering for multilevel interpolation schemes. Mathematical Methods for Curves and Surfaces: Oslo 2000, T. Lyche and L. L. Schumaker (eds), Vanderbilt University Press, Nashville, 2001, 211–220.
A. Iske. Progressive scattered data filtering. Preprint, Technische Universität München, 2002.
A. Iske. Optimal distribution of centers for radial basis function methods. Preprint, Technische Universität München, 2000.
H. Jung. Über die kleinste Kugel, die eine räumliche Figur einschließt. J. Reine Angew. Math. 123, 1901, 241–257.
C. L. Lawson and R. J. Hanson. Solving Least Squares Problems. Prentice-Hall, Englewood Cliffs, N.J., 1974.
W. R. Madych and S. A. Nelson. Multivariate interpolation: a variational theory. Manuscript, 1983.
W. R. Madych and S. A. Nelson. Multivariate interpolation and conditionally positive definite functions. Approx. Theory Appl. 4, 1988, 77–89.
W. R. Madych and S. A. Nelson. Multivariate interpolation and conditionally positive definite functions II. Math. Comp. 54, 1990, 211–230.
J. Meinguet. Multivariate interpolation at arbitrary points made simple. Z. Angew. Math. Phys. 30, 1979, 292–304.
J. Meinguet. An intrinsic approach to multivariate spline interpolation at arbitrary points. Polynomial and Spline Approximations, N. B. Sahney (ed.), Reidel, Dordrecht, 1979, 163–190.
J. Meinguet. Surface spline interpolation: basic theory and computational aspects. Approximation Theory and Spline Functions, S. P. Singh, J. H. Bury, and B. Watson (eds.), Reidel, Dordrecht, 1984, 127–142.
C. A. Micchelli. Interpolation of scattered data: distance matrices and conditionally positive definite functions. Constr. Approx. 2, 1986, 11–22.
C A. Micchelli, T. J. Rivlin, and S. Winograd. Optimal recovery of smooth functions. Numer. Math. 260, 1976, 191–200.
F. J. Narcowich and J. D. Ward. Norms of inverses and conditions numbers for matrices associated with scattered data. J. Approx. Theory 64, 1991, 69–94.
F. J. Narcowich and J. D. Ward. Norm estimates for the inverses of a general class of scattered-data radial-function interpolation matrices. J. Approx. Theory 69, 1992, 84–109.
M. J. D. Powell. The theory of radial basis function approximation in 1990. Advances in Numerical Analysis II: Wavelets, Subdivision, and Radial Basis Functions, W. A. Light (ed.), Clarendon Press, Oxford, 1992, 105–210.
F. P. Preparata and M. I. Shamos Computational Geometry, 2nd edition. Springer, New York, 1988.
R. A. Rankin. The closest packing of spherical caps in n dimensions. Proc. Glasgow Math. Assoc. 2, 1955, 139–144.
R. Schaback. Creating surfaces from scattered data using radial basis functions. Mathematical Methods for Curves and Surfaces, M. Daehlen, T. Lyche, and L. L. Schumaker (eds.), Vanderbilt University Press, Nashville, 1995, 477–496.
R. Schaback. Error estimates and condition numbers for radial basis function interpolation. Advances in Comp. Math. 3, 1995, 251–264.
R. Schaback. Multivariate interpolation and approximation by translates of a basis function. Approximation Theory VIII, Vol. 1: Approximation and Interpolation, C. K. Chui and L. L. Schumaker (eds.), World Scientific, Singapore, 1995, 491–514.
R. Schaback. Stability of radial basis function interpolants. Preprint, Universität Göttingen, 2001.
R. Schaback and H. Wendland. Inverse and saturation theorems for radial basis function interpolation. Math. Comp. 71, 2002, 669–681.
R. Schaback and H. Wendland. Characterization and construction of radial basis functions. Multivariate Approximation and Applications, N. Dyn, D. Leviatan, D. Levin, and A. Pinkus (eds.), Cambridge University Press, Cambridge, 2001, 1–24.
I. J. Schoenberg. Metric spaces and positive definite functions. Trans. Amer. Math. Soc. 44, 1938, 522–536.
I. J. Schoenberg. Metric spaces and completely monotone functions. Math. Ann. 39, 1938, 811–841.
H. Wendland. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Advances in Comp. Math. 4, 1995, 389–396.
Z. Wu. Multivariate compactly supported positive definite radial functions. Advances in Comp. Math. 4, 1995, 283–292.
Z. Wu and R. Schaback. Local error estimates for radial basis function interpolation of scattered data. IMA J. Numer. Anal. 13, 1993, 13–27.
F. Zeilfelder. Scattered data fitting with bivariate splines. This volume.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Iske, A. (2002). Scattered Data Modelling Using Radial Basis Functions. In: Iske, A., Quak, E., Floater, M.S. (eds) Tutorials on Multiresolution in Geometric Modelling. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04388-2_9
Download citation
DOI: https://doi.org/10.1007/978-3-662-04388-2_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-07819-4
Online ISBN: 978-3-662-04388-2
eBook Packages: Springer Book Archive