Skip to main content

Constructing Hamiltonian Triangle Strips on Quadrilateral Meshes

  • Conference paper
Visualization and Mathematics III

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

Because of their numeric stability properties, quadrilateral meshes have become a popular representation for finite elements computations and computer animation. In this paper we address the problem of optimally representing quadrilateral meshes as generalized triangle strips (with one swap bit per triangle). This is important because 3D rendering hardware is optimized for rendering triangle meshes transmitted from the CPU to the GPU in the form of triangle strips. We describe simple linear time and space constructive algorithms, where each quadrilateral face is split along one of its two diagonals and the resulting triangles are linked along the original mesh edges. We show that with these algorithms every connected manifold quadrilateral mesh without boundary can be optimally represented as a single Hamiltonian generalized triangle strip cycle in multiple ways, and we discuss simple strategies to tailor the construction for transparent vertex caching.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.M. Arkin, M. Held, J.S.B. Mitchell, and S.S. Skiena. Hamiltonian triangulations for fast rendering. In J. Van Leeuwen, editor, Algorithms-ESA’94, volume 855 of LNCS, pages 36 47, Utrecht, NL, September 1994.

    Google Scholar 

  2. R. Bar-Yehuda and C. Gotsman. Time/space tradeoffs for polygon mesh rendering. ACM Transactions on Graphics, 15 (2): 141–152, April 1996.

    Article  Google Scholar 

  3. A. Bogomjakov and C. Gotsman. Universal rendering sequences for transparent vertex caching of progressive meshes. In Proceedings, Graphics Interface, GI’2001, pages 81–90, June 2001.

    Google Scholar 

  4. P. Bose and G.T. Toussaint. No quadrangulation is extremely odd. In Proceedings, International Symposium on Algorithms and Computation, Cairns, Australia, 1995.

    Google Scholar 

  5. E. Catmull and J. Clark. Recursively generated B-spline surfaces on arbitrary topological meshes. Computer Aided Design, 10: 350–355, 1978.

    Article  Google Scholar 

  6. N. Chiba and T. Nishizeki. The hamiltonian cycle problem is linear-time solvable for 4-connected planar graphs. Journal of Algorithms, 10 (2): 187–211, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  7. M.M. Chow. Optimized geometry compression for real-time rendering. In IEEE Visualization’97 Conference Proceedings, pages 347–354, 1997.

    Google Scholar 

  8. R. Daffier, D. Cohen-Or, and Y. Matins Context-based Space Filling Curves. In Eurographics 2000 Conference Proceedings, 2000.

    Google Scholar 

  9. M. Deering. Geometric compression. In Siggraph’95 Conference Proceedings, pages 13 20, August 1995.

    Google Scholar 

  10. R. Estkowski, J. S. B. Mitchell, and X. Xiang. Optimal Decomposition of Polygonal Models into Triangle Strips. In Proceedings, ACM Symposium on Computational Geometry, 2002.

    Google Scholar 

  11. F. Evans, S. Skiena, and A. Varshney. Optimizing triangle strips for fast rendering. In Proceedings, IEEE Visualization’96, pages 319–326, 1996.

    Google Scholar 

  12. J. L. Gross and T. W. Tucker. Topological Graph Theory. Dover Publications, Inc., 2001.

    MATH  Google Scholar 

  13. S.L. Hakimi, E.F. Schmeichel, and C. Thomassen. On the number of hamiltonian cycles in a maximal planar graph. Journal of Graph Theory, pages 365 370, 1979.

    Article  MathSciNet  Google Scholar 

  14. H. Hoppe. Piecewise smooth subdivision surfaces with normal control. In Siggraph’1999 Conference Proceedings, pages 269 276, 1999.

    Google Scholar 

  15. A. King, D. Szymczak and J. Rossignac. Connectivity compression for irregular quadrilateral meshes. Technical Report GIT-GVU-99–36, Georgia Tech GVU, 1999.

    Google Scholar 

  16. ISO/IEC 14496–1 Information technology - Coding of audio-visual objects, Part 2: Visual/PDAM1 (MPEG-4 v.2), mar 1999.

    Google Scholar 

  17. S. Rarnaswarni, P. Ramos, and G. Toussaint. Converting triangulations to quadrangulations. In Proceedings, Seventh Canadian Conference on Computational Geometry, CCCG’95, 1995.

    Google Scholar 

  18. J. Rossignac. Edgebreaker: Connectivity compression for triangular meshes. IEEE Transactions on Visualization and Computer Graphics, 5 (1): 47–61, January-March 1999.

    Google Scholar 

  19. D.P. Sanders. On paths in planar graphs. Journal of Graph Theory, pages 341 345, 1997.

    Article  Google Scholar 

  20. R.E. Tarjan. Data Structures and Network Algorithms. Number 44 in CBMSNSF Regional Conference Series in Applied Mathematics. SIAM, 1983.

    Google Scholar 

  21. G. Taubin and J. Rossignac. Geometry Compression through Topological Surgery. ACM Transactions on Graphics, 17 (2): 84–115, April 1998.

    Article  Google Scholar 

  22. G. Taubin and J. Rossignac. Course 38: 3d geometry compression. Siggraph’2000 Course Notes, July 2000.

    Google Scholar 

  23. R. Thomas and X. Yu. 4-connected projective-planar graphs are hamiltonian. Journal of Combin. Theory Ser. B, pages 114–132, 1994.

    Google Scholar 

  24. C. Tourna and C. Gotsman. Triangle mesh compression. In Graphics Interface Conference Proceedings, Vancouver, June 1998.

    Google Scholar 

  25. W.T. Tutte. A theorem on planar graphs. Trans. Amer. Math. Soc., pages 99–116, 1956.

    Google Scholar 

  26. L. Velho, L.H. de Figueiredo, and J. Gomes. Hierarchical generalized triangle strips. The Visual Computer, 15 (1): 21–35, 1999.

    Article  Google Scholar 

  27. H. Whitney. A theorem on graphs. Ann. Math., pages 378–390, 1931.

    Google Scholar 

  28. D. Zorin and P. Schröder. Course 23: Subdivision for modeling and animation. Siggraph’2000 Course Notes, July 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Taubin, G. (2003). Constructing Hamiltonian Triangle Strips on Quadrilateral Meshes. In: Hege, HC., Polthier, K. (eds) Visualization and Mathematics III. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05105-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05105-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05682-6

  • Online ISBN: 978-3-662-05105-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics