Skip to main content

Minkowski Geometric Algebra and the Stability of Characteristic Polynomials

  • Conference paper
Visualization and Mathematics III

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Summary

A polynomial p is said to be Γ-stable if all its roots lie within a given domain Γ in the complex plane. The Γ-stability of an entire family of polynomials, defined by selecting the coefficients of p from specified complex sets, can be verified by (i) testing the Γ-stability of a single member, and (ii) checking that the “total value set” V * for p along the domain boundary ∂Γ does not contain 0 (V * is defined as the set of all values of p for each point on ∂Γ and every possible choice of the coefficients). The methods of Minkowski geometric algebra —the algebra of point sets in the complex plane — offer a natural language for the stability analysis of families of complex polynomials. These methods are introduced, and applied to analyzing the stability of disk polynomials with coefficients selected from circular disks in the complex plane. In this context, V * may be characterized as the union of a one-parameter family of disks, and we show that the Γ-stability of a disk polynomial can be verified by a finite algorithm (a counterpart to the Kharitonov conditions for rectangular coefficient sets) that entails checking that at most two real polynomials remain positive for all t, when the domain boundary ∂Γ is a given polynomial curve γ(t).Furthermore, the “robustness margin” can be determined by computing the real roots of a real polynomial.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Ackermann (1993), Robust Control: Systems with Uncertain Physical Parameters, Springer, London.

    MATH  Google Scholar 

  2. G. Alefeld and J. Herzberger (1983), Introduction to Interval Computations (translated by J. Rokne), Academic Press, New York.

    MATH  Google Scholar 

  3. B. R. Barmish (1994), New Tools for Robustness of Linear Systems, Macmillan, New York.

    MATH  Google Scholar 

  4. S. Barnett (1983), Polynomials and Linear Control Systems, Marcel Dekker, New York.

    MATH  Google Scholar 

  5. A. C. Bartlett, C. V. Hollot, and H. Lin (1988), Root locations of an entire polytope of polynomials: It suffices to check the edges, Mathematics of Control, Signals, and Systems 1, 61–71.

    Article  MathSciNet  MATH  Google Scholar 

  6. H. Bilharz (1944), Bemerkung zu einem Satze von Hurwitz, Zeitschrift fur Angewandte Mathematik und Mechanik 24, 77–82.

    Article  MathSciNet  MATH  Google Scholar 

  7. H. Blum and R. N. Nagel (1978), Shape description using weighted symmetric axis features, Pattern Recognition 10, 167–180.

    Article  MATH  Google Scholar 

  8. V. G. Boltyanskii (1964), Envelopes, Macmillan, New York.

    Google Scholar 

  9. F. L. Bookstein (1979), The line-skeleton, Computer Graphics and Image Processing 11, 123–137.

    Article  Google Scholar 

  10. N. K. Bose and K. D. Kim (1989), Stability of a complex polynomial set with coefficients in a diamond and generalizations, IEEE Transactions on Circuits and Systems 36, 1168–1174.

    Article  MathSciNet  MATH  Google Scholar 

  11. N. K. Bose and Y. Q. Shi (1987), A simple general proof of Kharitonov’s generalized stability criterion, IEEE Transactions on Circuits and Systems 34, 1233–1237.

    Article  MathSciNet  MATH  Google Scholar 

  12. J. W. Bruce and P. J. Giblin (1981), What is an envelope?, Math. Gazette 65, 186–192.

    Article  MathSciNet  Google Scholar 

  13. J. W. Bruce and P. J. Giblin (1984), Curves and Singularities, Cambridge Univ. Press.

    MATH  Google Scholar 

  14. H. Chapellat, S. P. Bhattacharyya, and M. Dahleh (1990), Robust stability of a family of disc polynomials, International Journal of Control 51, 1353–1362.

    Article  MathSciNet  MATH  Google Scholar 

  15. H. I. Choi, S. W. Choi, H. P. Moon, and N. S. Wee (1997), New algorithm for medial axis transform of plane domain, Graphical Models and Image Processing 59, 463–483.

    Article  Google Scholar 

  16. J. J. Chou (1989), Numerical Control Milling Machine Toolpath Generation for Regions Bounded by Free Form Curves, PhD thesis, University of Utah.

    Google Scholar 

  17. R. Deaux (1956), Introduction to the Geometry of Complex Numbers (translated from the French by H. Eves), F. Ungar, New York.

    Google Scholar 

  18. R. T. Farouki and J-C. A. Chastang (1992), Curves and surfaces in geometrical optics, Mathematical Methods in Computer Aided Geometric Design II, (T. Lyche & L. L. Schumaker, eds. ), Academic Press, pp. 239–260.

    Google Scholar 

  19. R. T. Farouki, H. P. Moon, and B. Ravani (2001), Minkowski geometric algebra of complex sets, Geometriae Dedicata 85, 283–315.

    Article  MathSciNet  MATH  Google Scholar 

  20. R. T. Farouki, H. P. Moon, and B. Ravani (2000), Algorithms for Minkowski products and implicitly-defined complex sets, Advances in Computational Mathematics 13, 199–229.

    Article  MathSciNet  MATH  Google Scholar 

  21. R. T. Farouki, W. Gu, and H. P. Moon, (2000), Minkowski roots of complex sets, in Geometric Modeling and Processing 2000, IEEE Computer Society Press, Los Alamitos, CA, pp. 287–300.

    Google Scholar 

  22. R. T. Farouki and H. Pottmann, (2002), Exact Minkowski products of N complex disks, Reliable Computing 8, to appear.

    Google Scholar 

  23. R. H. Fowler (1929), The Elementary Differential Geometry of Plane Curves, Cambridge Univ. Press.

    MATH  Google Scholar 

  24. E. Frank (1946), On the zeros of polynomials with complex coefficients, Bulletin of the American Mathematical Society 52, 144–157 & 890–898.

    Google Scholar 

  25. F. R. Gantmacher (1960), The Theory of Matrices, Vol. 2, Chelsea, New York.

    Google Scholar 

  26. I. Gargantini and P. Henrici (1972), Circular arithmetic and the determination of polynomial zeros, Numerische Mathematik 18, 305–320.

    Article  MathSciNet  MATH  Google Scholar 

  27. P. K. Ghosh (1988), A mathematical model for shape description using Minkowski operators, Comput. Vision, Graphics, Image Process. 44, 239–269.

    Article  Google Scholar 

  28. F. Gomes Teixeira (1971), Traité des Courbes Spéciales Remarquables Planes et Gauches, Tome I, Chelsea (reprint), New York.

    MATH  Google Scholar 

  29. H. N. Gursoy and N. M. Patrikalakis (1992), An automatic coarse and fine surface mesh generation scheme based on the medial axis transform, I: Algorithms Engineering with Computers 8, 121–137.

    Article  Google Scholar 

  30. H. Hadwiger (1957), Vorlesungen liber Inhalt, Oberfläche, und Isoperimetrie, Springer, Berlin.

    Book  Google Scholar 

  31. M. Held (1991), On the Computational Geometry of Pocket Machining, Springer—Verlag, Berlin.

    Book  MATH  Google Scholar 

  32. A. Hurwitz (1895), On the conditions under which an equation has only roots with negative real parts, in Selected Papers on Mathematical Trends in Control Theory, Dover, New York, 1964, pp. 72–82 (translated from Mathematische Annalen 46, 273–284 ).

    Google Scholar 

  33. A. Kaul (1993), Computing Minkowski sums, PhD Thesis, Columbia University.

    Google Scholar 

  34. A. Kaul and R. T. Farouki (1995), Computing Minkowski sums of plane curves, Int. J. Comput. Geom. Applic. 5, 413–432.

    Article  MathSciNet  MATH  Google Scholar 

  35. V. L. Kharitonov (1978), Asymptotic stability of an equilibrium position of a family of systems of linear differential equations, Differential’nye Uraveniya 14, 1483–1485.

    MathSciNet  Google Scholar 

  36. V. L. Kharitonov (1978), On a generalization of a stability criterion, Izvestiia Akademii nauk Kazakhskoi SSR, Seria fiziko—mathematicheskaia 1, 53–57.

    MathSciNet  Google Scholar 

  37. A. Kurosh (1980), Higher Algbera (translated by G. Yankovsky ), Mir Publishers, Moscow.

    Google Scholar 

  38. J. D. Lawrence (1972), A Catalog of Special Plane Curves, Dover, New York.

    MATH  Google Scholar 

  39. H. Lin, C. V. Hollot, and A. C. Bartlett (1987), Stability of families of polynomials: geometric considerations in the coefficient space, International Journal of Control 45, 649–660.

    Article  MathSciNet  MATH  Google Scholar 

  40. Q. Lin and J. G. Rokne (1998), Disk Bézier curves, Computer Aided Geometric Design 15, 721–737.

    Article  MathSciNet  MATH  Google Scholar 

  41. E. H. Lockwood (1967), A Book of Curves, Cambridge Univ. Press.

    Google Scholar 

  42. M. Marden (1966), Geometry of Polynomials ( 2nd edition ), American Mathematical Society, Providence, RI.

    MATH  Google Scholar 

  43. H. Minkowski (1903), Volumen and Oberfläche, Math. Ann. 57, 447–495.

    Article  MathSciNet  MATH  Google Scholar 

  44. R. J. Minnechelli, J. J. Anagnost, and C. A. Desoer (1989), An elementary proof of Kharitonov’s stability theorem with extensions, IEEE Transactions on Automatic Control 34, 995–998.

    Article  Google Scholar 

  45. H. P. Moon (1999), Minkowski Pythagorean hodographs, Computer Aided Geometric Design 16, 739–753.

    Article  MathSciNet  MATH  Google Scholar 

  46. R. E. Moore (1966), Interval Analysis, Prentice-Hall, Englewood Cliffs, NJ.

    MATH  Google Scholar 

  47. R. E. Moore (1979), Methods and Applications of Interval Analysis, SIAM, Philadelphia.

    Book  MATH  Google Scholar 

  48. T. Needham (1997), Visual Complex Analysis, Oxford Univ. Press.

    MATH  Google Scholar 

  49. H. Persson (1978), NC machining of arbitrarily shaped pockets, Computer Aided Design 10, 169–174.

    Article  Google Scholar 

  50. M. S. Petkovié and L. D. Petkovié (1998), Complex Interval Arithmetic and Its Applications, Wiley VCH, Berlin.

    Google Scholar 

  51. B. T. Polyak, P. S. Scherbakov, and S. B. Shmulyian (1994), Construction of value set for robustness analysis via circular arithmetic, International Journal of Robust and Nonlinear Control 4, 371–385.

    MathSciNet  Google Scholar 

  52. H. Ratschek and J. Rokne (1984), Computer Methods for the Range of Functions, Ellis Horwood, Chichester.

    MATH  Google Scholar 

  53. E. J. Routh (1892), Dynamics of a System of Rigid Bodies, Macmillan, New York.

    MATH  Google Scholar 

  54. H. Schwerdtfeger (1979), Geometry of Complex Numbers, Dover, New York.

    MATH  Google Scholar 

  55. J. Serra (1982), Image Analysis and Mathematical Morphology, Academic Press, London.

    MATH  Google Scholar 

  56. D. D. Siljak and D. M. Stipanovié (1999), Robust D-stability via positivity, Automatica 35, 1477–1484.

    Article  MATH  Google Scholar 

  57. C. B. Soh, C. S. Berger, and K. P. Dabke (1985), Ori the stability properties of polynomials with perturbed coefficients, IEEE Transactions on Automatic Control 30, 1033–1036.

    Article  MathSciNet  MATH  Google Scholar 

  58. V. Srinivasan, L. R. Nackman, J. M. Tang, and S. N. Meshkat (1992), Automatic mesh generation using the symmetric axis transform of polygonal domains, IEEE Proceedings 80, 1485–1501.

    Article  Google Scholar 

  59. T. K. H. Tam and C. G. Armstrong (1991), 2D finite element mesh generation by medial axis subdivision, Advances in Engineering Software 13, 313–324.

    MATH  Google Scholar 

  60. J. V. Uspensky (1948), Theory of Equations, McGraw-Hill, New York.

    Google Scholar 

  61. V. Vicino and M. Milanese (1990), Robust stability of linear state space models via Bernstein polynomials, in Control of Uncertain Systems ( D. Hinrichsen and B. Martensson, eds.), Birkhauser, Boston.

    Google Scholar 

  62. J. C. Willems and R. Tempo (1999), The Kharitonov theorem with degree drop, IEEE Transactions on Automatic Control 44, 2218–2220.

    Article  MathSciNet  MATH  Google Scholar 

  63. M. Zettler and J. Garloff (1989), Robustness analysis of polynomial parameter dependence using Bernstein expansion, IEEE Transactions on Automatic Control 43, 425–431.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Farouki, R.T., Moon, H.P. (2003). Minkowski Geometric Algebra and the Stability of Characteristic Polynomials. In: Hege, HC., Polthier, K. (eds) Visualization and Mathematics III. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05105-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05105-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05682-6

  • Online ISBN: 978-3-662-05105-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics