Skip to main content

Language Theory and Molecular Genetics: Generative Mechanisms Suggested by DNA Recombination

  • Chapter
  • First Online:
Handbook of Formal Languages

Abstract

The stimulus for the development of the theory presented in this chapter is the string behaviors exhibited by the group of molecules often referred to collectively as the informational macromolecules. These include the molecules that play central roles in molecular biology and genetics: DNA, RNA, and the polypeptides. The discussion of the motivation for the generative systems is focused here on the recombinant behaviors of double stranded DNA molecules made possible by the presence of specific sets of enzymes. The function of this introduction is to provide richness to the reading of this chapter. It indicates the potential for productive interaction between the systems discussed and molecular biology, biotechnology, and DNA computing. However, the theory developed in this chapter can stand alone. It does not require a concern for its origins in molecular phenomena. Accordingly, only the most central points concerning the molecular connection are given here. An appendix to this chapter is included for those who wish to consider the molecular connection and possible applications in the biosciences. Here we present only enough details to motivate each term in the definition of the concept of a splicing rule that is given in the next section. The splicing rule concept is the foundation for the present chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Brainerd, An analog of a theorem about context-free languages, Inform. Control, 11 (1968), 561–567.

    Article  MathSciNet  Google Scholar 

  2. C. Calude, Gh. Pâun, Global syntax and semantics for recursively enumerable languages, Fundamenta Informaticae, 4, 2 (1981), 245–254.

    MathSciNet  MATH  Google Scholar 

  3. J. Collado-Vides, The search for a grammatical theory of gene regulation is formally justified by showing the inadequacy of context-free grammars, CA BIOS, 7 (1991), 321–326.

    Google Scholar 

  4. E. Csuhaj-Varju, L. Freund, L. Kari, Gh. Pâun, DNA computing based on splicing: universality results, First Annual Pacific Symp. on Biocomputing, Hawaii, Jan. 1996.

    Google Scholar 

  5. E. Csuhaj-Varju, L. Kari, Gh. Pâun, Test tube distributed systems based on splicing, Computers and AI, 15, 2–3 (1996), 211–232.

    MATH  Google Scholar 

  6. K. Culik II, T. Harju, Splicing semigroups of dominoes and DNA, Discrete Appl. Math., 31 (1991), 261–277.

    Article  MathSciNet  Google Scholar 

  7. J. Dassow, V. Mitrana, Splicing grammar systems, Computers and AI, 15, 2–3 (1996), 109–121.

    Google Scholar 

  8. J. Dassow, Gh. Pâun, Regulated Rewriting in Formal Language Theory, Springer-Verlag, Berlin, 1989.

    Book  Google Scholar 

  9. A. De Luca, A. Restivo, A characterization of strictly locally testable languages and its application to subsemigroups of a free semigroup, Inform. Control, 44 (1980), 300–319.

    Article  MathSciNet  Google Scholar 

  10. K. L. Denninghoff, R. W. Gatterdam, On the undecidability of splicing systems, Intern. J. Computer Math., 27 (1989), 133–145.

    Article  Google Scholar 

  11. A. Ehrenfeucht, Gh. Pâun, G. Rozenberg, Contextual grammars, in the present Handbook.

    Google Scholar 

  12. C. Ferretti, S. Kobayashi, T. Yokomori, DNA splicing systems and Post systems, First Annual Pacific Symp. on Biocomputing, Hawaii, Jan. 1996.

    Google Scholar 

  13. R. Freund, Splicing on graphs,Proc. 1st Intern. Symp. on Intell. in Neural and Biological Systems, IEEE, Herndon, 1995, 189–194.

    Google Scholar 

  14. R. Freund, L. Kari, Gh. Pâun, DNA computing based on splicing: The existence of universal computers, Technical Report 185–2/FR-2/95, TU Wien, 1995.

    Google Scholar 

  15. B.S. Galiukschov, Semicontextual grammars, Math. Logica i Math. Ling., Kalinin Univ., 1981, 38–50 (in Russian)

    Google Scholar 

  16. R. W. Gatterdam, Splicing systems and regularity, Intern. J. Computer Math., 31 (1989), 63–67.

    Article  Google Scholar 

  17. R. W. Gatterdam, DNA and twist free splicing systems, in Words, Languages and Combinatorics, II ( M. Ito, H. Jürgensen, eds.), World Sci. Publ., Singapore, 1994, 170–178.

    MATH  Google Scholar 

  18. S. Ginsburg, Automata and Language-Theoretic Properties of Formal Languages, North-Holland, Amsterdam, 1975.

    MATH  Google Scholar 

  19. J. Gruska, A few remarks on the index of context-free grammars and languages, Inform. Control, 19 (1971), 216–223.

    Article  MathSciNet  Google Scholar 

  20. J. Gruska, Descriptional complexity of context-free languages, Proc. MFCS Symp., High Tatras, 1973, 71–83.

    Google Scholar 

  21. M. Harrison, Introduction to Formal Language Theory, Addison-Wesley, Reading, Mass., 1978.

    MATH  Google Scholar 

  22. T. Head, Formal language theory and DNA: an analysis of the generative capacity of specific recombinant behaviors, Bull. Math. Biology, 49 (1987), 737–759.

    Article  MathSciNet  Google Scholar 

  23. T. Head, Splicing schemes and DNA, in Lindenmayer Systems: Impacts on Theoretical Computer Science and Developmental Biology ( G. Rozenberg, A. Salomaa, eds.), Springer-Verlag, Berlin, 1992, 371–383.

    Chapter  Google Scholar 

  24. G. T. Herman, G. Rozenberg, Developmental Systems and Languages, North-Holland, Amsterdam, 1975.

    MATH  Google Scholar 

  25. J. E. Hoperoft, J. D. Ullman, Introduction to Automata Theory, Languages, and Computing, Addison-Wesley, Reading, Mass., 1979.

    MATH  Google Scholar 

  26. L. Ilie, V. Mitrana, Crossing-over on languages. A formal representation of the recombination of genes in a chromosome, submitted, 1995.

    Google Scholar 

  27. L. Kari, Gh. Nun, A. Salomaa, The power of restricted splicing with rules from a regular set, Journal of Univ. Computer Sci., 2, 4 (1996).

    Google Scholar 

  28. M. Latteux, B. Leguy, B. Ratoandromanana, The family of one-counter languages is closed under quotient, Acta Informatica, 22 (1985), 579–588.

    MathSciNet  MATH  Google Scholar 

  29. S. Marcus, Contextual grammars, Rev. Roum. Math. Pures Appl., 14 (1969), 1525–1534.

    MathSciNet  MATH  Google Scholar 

  30. S. Marcus, Linguistic structures and generative devices in molecular genetics, Cah. ling. th. appl., 11, 2 (1974), 77–104.

    MathSciNet  Google Scholar 

  31. A. Mateescu, Gh. Nun, G. Rozenberg, A. Salomaa, Simple splicing systems, Discrete Applied Math., to appear.

    Google Scholar 

  32. R. McNaughton, S. Papert, Counter-Free Automata, MIT Press, Cambridge, Mass., 1971.

    MATH  Google Scholar 

  33. V. Mihalache, Gh. Nun, G. Rozenberg, A. Salomaa, Generating strings by replication: a simple case, Acta Informatica,to appear.

    Google Scholar 

  34. V. Mitrana, Crossover systems: a language-theoretic approach to DNA recombination, submitted, 1995.

    Google Scholar 

  35. Gh. Nun, On the splicing operation, Discrete Appl. Math., 70 (1996), 57–79.

    Article  MathSciNet  Google Scholar 

  36. Gh. Nun, On the power of the splicing operation, Intern. J. Computer Math., 59 (1995), 27–35.

    Article  Google Scholar 

  37. Gh. Nun, The splicing as an operation on languages, Proc. 1st Intern. Symp. on Intell. in Neural and Biological Systems, IEEE, Herndon, 1995, 176–180.

    Google Scholar 

  38. Gh. Nun, Splicing. A challenge to formal language theorists, Bulletin EATCS, 57 (1995), 183–194.

    MATH  Google Scholar 

  39. Gh. Nun, Regular extended H systems are computationally universal, J. Automata, Languages, Combinatorics, 1, 1 (1996), 27–36.

    MathSciNet  Google Scholar 

  40. Gh. Nun, On the power of splicing grammar systems, Ann. Univ. Bucureei, Matem.-Inform. Series, 45, 1 (1996), 93–106.

    MathSciNet  Google Scholar 

  41. Gh. Nun, G. Rozenberg, A. Salomaa, Restricted use of the splicing operation, Intern. J. Computer Math., 60 (1996), 17–32.

    Article  Google Scholar 

  42. Gh. Pâun, G. Rozenberg, A. Salomaa, Computing by splicing, Theoretical Computer Sci., 168, 2 (1996), 321–336.

    Article  MathSciNet  Google Scholar 

  43. Gh. Nun, A. Salomaa, DNA computing based on the splicing operation, Mathematica Japonica, 43, 3 (1996), 607–632.

    MathSciNet  MATH  Google Scholar 

  44. D. Pixton, Regularity of splicing languages, Discrete Appl. Math., 69, (1996), 101–124.

    Article  MathSciNet  Google Scholar 

  45. D. Pixton, Linear and circular splicing systems, Proc. 1st Intern. Symp. on Intell. in Neural and Biological Systems, IEEE, Herndon, 1995, 38–45.

    Google Scholar 

  46. R. J. Roberts, S. M. Lim, R. S. Lloyd (eds.), Nucleases, Second Edition, Cold Spring Harbor Laboratory Press, 1993.

    Google Scholar 

  47. G. Rozenberg, A. Salomaa, The Mathematical Theory of L Systems, Academic Press, New York, 1980.

    MATH  Google Scholar 

  48. A. Salomaa, On the index of context-free grammars and languages, Inform. Control, 14 (1969), 474–477.

    Article  MathSciNet  Google Scholar 

  49. A. Salomaa, Formal Languages, Academic Press, New York, London, 1973.

    Google Scholar 

  50. M. P. Schützenberger, On finite monoids having only trivial subsemigroups, Inform. Control, 8 (1965), 190–194.

    Article  MathSciNet  Google Scholar 

  51. M. P. Schützenberger, Sur certaines operations de fermeture dans les langages rationels, Symposia Math., 15 (1975), 245–253.

    Google Scholar 

  52. D. B. Searls, The linguistics of DNA, American Scientist, 80 (1992), 579–591.

    Google Scholar 

  53. R. Siromoney, K.B. Subramanian, V. Rajkumar Dare, Circular DNA and splicing systems, Proc. of Parallel Image Analysis, LNCS 654, Springer-Verlag, Berlin, 1992, 260–273.

    Book  Google Scholar 

  54. Y. Takada, R. Siromoney, On identifying DNA splicing systems from examples, Proc. AII’92, LNAI 642 (P. K. Jantke, ed.), Springer-Verlag, Berlin, 1992, 305–319.

    Google Scholar 

  55. A. Thue, Über unendliche Zeichenreichen, Norsche Vid. Selsk. Skr., I. Mat. Nat. Kl., Kristiania, 7 (1906), 1–22.

    Google Scholar 

  56. T. Yokomori, M. Ishida, S. Kobayashi, Learning local languages and its application to protein a-chain identification, Proc. 27th Hawaii Intern. Conf. System Sci., vol. V, 1994, 113–122.

    Google Scholar 

  57. T. Yokomori, S. Kobayashi, DNA evolutionary linguistics and RNA structure modelling: a computational approach, Proc. 1st Intern. Symp. on Intell. in Neural and Biological Systems, IEEE, Herndon, 1995, 38–45.

    Google Scholar 

  58. T. Yokomori, S. Kobayashi, C. Ferretti, On the power of circular splicing systems and DNA computability, Report CSIM 95–01, Univ. of Electro-Comm., Chofu, Tokyo, 1995.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Head, T., Păun, G., Pixton, D. (1997). Language Theory and Molecular Genetics: Generative Mechanisms Suggested by DNA Recombination. In: Rozenberg, G., Salomaa, A. (eds) Handbook of Formal Languages. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07675-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07675-0_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08230-6

  • Online ISBN: 978-3-662-07675-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics