Abstract
We present a new constraint system with equational and membership constraints over infinite trees. It provides for complete and correct satisfiability and entailment tests and is therefore suitable for the use in concurrent constraint programming systems which are based on cyclic data structures.
Our set defining devices are greatest fixpoint solutions of regular systems of equations with a deterministic form of union. As the main technical particularity of the algorithms we present a novel memorization technique. We believe that both satisfiability and entailment tests can be implemented in an efficient and incremental manner.
Supported by the Graduierten-Kolleg Informatik der Universität des Saarlandes and by the Hydra project at DFKI.
Supported by the Bundesminister für Forschung und Technology, contract ITW 9105, and by the Esprit working group CCL, contract EP 6028.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
H. Aït-Kaci and A. Podelski. Towards a meaning of LIFE. In Third PLIPS, pages 255–274. Springer-Verlag, LNCS 528, August 1991.
H. Aït-Kaci, A. Podelski, and G. Smolka. A feature-based constraint system for logic programming with entailment. In 5th FGCS, pages 1012–1022, June 1992.
R. Backofen and G. Smolka. A complete and recursive feature theory. Research Report RR-92-30, German Research Center for Artificial Intelligence (DFKI), Stuhlsatzenhausweg 3, 6600 Saarbrücken 11, Germany, September 1992.
A. Colmerauer. Equations and inequations on finite and infinite trees. In 2nd FGCS, pages 85–99, 1984.
A. Colmerauer, H. Kanoui, and M. V. Caneghem. Prolog, theoretical principles and current trends. Technology and Science of Informatics, 2(4):255–292, 1983.
H. Comon and C. Delor. Equational formulae with membership constraints. Rapport de Recherche 649, LRI, Université de Paris Sud, Orsay,France, Mar. 1991.
I. Guessarian. Some fixpoint techniques in algebraic structures and applications to computer science. In Aït-Kaci and M. Nivat, editors, Resolution of Equations in Algebraic Structures, volume 1, pages 263–292. Academic Press, 1989.
S. Haridi and S. Janson. Kernel andorra prolog and its computation model. In 7th ICLP, pages 31–48, Cambridge, June 1990. MIT Press.
M. Henz, G. Smolka, and J. Würtz. Oz — a programming language for multi-agent systems. In 13th IJCAI, Chambéry, France, Aug. 1993.
M. Höhfeld and G. Smolka. Definite relations over constraint languages. LILOG Report 53, IWBS, IBM Deutschland, Postfach 80 08 80, 7000 Stuttgart 80, Germany, Oct. 1988.
J. Jaffar and J.-L. Lassez. Constraint logic programming. In 14th POPL, pages 111–119, Munich, Germany, Jan. 1987.
J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1984.
M. J. Maher. Logic semantics for a class of committed-choice programs. In Fourth ICLP, pages 858–876. MIT Press, 1987.
M. J. Maher. Complete axiomatizations of the algebras of finite, rational and infinite trees. In Third LICS, pages 348–357. IEEE Computer Society, 1988.
J. Niehren and A. Podelski. Feature automata and recognizable sets of feature trees. In Tapssoft, Apr. 1993.
J. Niehren, A. Podelski, and R. Treinen. Equational and membership constraints for infinite trees. Research Report RR-93-14, Deutsches Forschungszentrum für Künstliche Intelligenz, Stuhlsatzenhausweg 3, D-W-6600 Saarbrücken, Germany, 1993.
V. Saraswat and M. Rinard. Semantic foundations of concurrent constraint programming. In 18th POPL, pages 333–351, Jan. 1991.
G. Smolka. A calculus for higher-order concurrent constraint programming. Research report, Deutsches Forschungszentrum für Künstliche Intelligenz, Stuhlsatzenhausweg 3, D-W-6600 Saarbrücken, Germany, 1993. Forthcomming.
G. Smolka and R. Treinen. Records for logic programming. In Proceedings of the Joint International Conference and Symposium on Logic Programming, pages 240–254, Washington, USA, 1992. The MIT Press.
G. Smolka and R. Treinen. Records for logic programming. Research Report RR-92-23, Deutsches Forschungszentrum für Künstliche Intelligenz, Stuhlsatzenhausweg 3, D-W-6600 Saarbrücken, Germany, Aug. 1992.
W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, volume B — Formal Models and Semantics, chapter 4, pages 133–191. Elsevier Science Publishers and The MIT Press, 1990.
T. E. Uribe. Sorted unification using set constraints. In 11th CADE LNCS vol. 607, pages 163–177, June 1992. Springer-Verlag.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1993 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Niehren, J., Podelski, A., Treinen, R. (1993). Equational and membership constraints for infinite trees. In: Kirchner, C. (eds) Rewriting Techniques and Applications. RTA 1993. Lecture Notes in Computer Science, vol 690. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-21551-7_9
Download citation
DOI: https://doi.org/10.1007/978-3-662-21551-7_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-56868-1
Online ISBN: 978-3-662-21551-7
eBook Packages: Springer Book Archive