Abstract
In this chapter, applications of computational intelligence methods in the field of production engineering are presented and discussed. Although a special focus is set to applications in machining, most of the approaches can be easily transferred to respective tasks in other fields of production engineering, e. g., forming and coating. The complete process chain of machining operations is considered: The design of the machine, the tool, and the workpiece, the computation of the tool paths, the model selection and parameter optimization of the empirical or simulation-based surrogate model, the actual optimization of the process parameters, the monitoring of important properties during the process, as well as the posterior multicriteria decision analysis. For all these steps, computational intelligence techniques provide established tools. Evolutionary and genetic algorithms are commonly utilized for the internal optimization tasks. Modeling problems can be solved using artificial neural networks. Fuzzy logic represents an intuitive way to formalize expert knowledge in automated decision systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Abbreviations
- 2-D:
-
two-dimensional
- CAD:
-
computer-aided design
- CAM:
-
computer-assisted manufacturing
- CI:
-
computational intelligence
- CMA:
-
covariance matrix adaptation
- EA:
-
evolutionary algorithm
- EC:
-
evolutionary computation
- ES:
-
evolution strategy
- GA:
-
genetic algorithm
- NC:
-
numerical control
- NN:
-
neural network
- NSGA:
-
nondominated sorting genetic algorithm
- NURBS:
-
nonuniform rational B-spline
- PSO:
-
particle swarm optimization
- SOM:
-
self-organizing map
References
E. Venkata Rao: Advanced Modeling and Optimization of Manufacturing Processes (Springer, Berlin, Heidelberg 2011)
D. Dasgupta, Z. Michalewicz: Evolutionary Algorithms in Engineering Applications (Springer, Berlin, Heidelberg 1997)
W. Banzhaf, M. Brameier, M. Stautner, K. Weinert: Genetic programming and its application in machining technology. In: Advances in Computational Intelligence: Theory and Practice, ed. by H.-P. Schwefel, I. Wegener, K. Weinert (Springer, Berlin, Heidelberg 2003) pp. 194–244, Chap. 7
I. Mukherjee, P. Ray: A review of optimization techniques in metal cutting processes, Comput. Ind. Eng. 50(1-2), 15–34 (2006)
H. Aytug, M. Khouja, F.E. Vergara: Use of genetic algorithms to solve production and operations management problems: A review, Int. J. Prod. Res. 41(17), 3955–4009 (2003)
P. Kersting, A. Zabel: Optimizing NC-tool paths for simultaneous five-axis milling based on multi-population multi-objective evolutionary algorithms, Adv. Eng. Softw. 40(6), 452–463 (2009)
R. Roy, S. Hinduja, R. Teti: Recent advances in engineering design optimisation: Challenges and future trends, CIRP Ann. Manuf. Technol. 57(2), 697–715 (2008)
W. Liu, M. Liang: A particle swarm optimization approach to a multi-objective reconfigurable machine tool design problem, IEEE Cong. Evol. Comput. (2006) pp. 2222–2229
S. Mekid, A. Khalid: Robust design with error optimization analysis of CNC micromilling machine, 5th CIRP Int. Semin. Intell. Comput. Manuf. Eng. (2006) pp. 583–587
H. Schulz, A.K. Emrich: Optimization of the chip flute of drilling tools using the principle of genetic algorithms, 2nd CIRP Int. Semin. Intell. Comput. Manuf. Eng. (2000) pp. 371–376
E. Abele, M. Fujara: Simulation-based twist drill design and geometry optimization, CIRP Ann. Manuf. Technol. 59(1), 145–150 (2010)
G. Jared, R. Roy, J. Grau, T. Buchannan: Flexible optimization within the CAD/CAM environment, CIRP Int. Seminar Intell. Comput. Manuf. Eng. (1998) pp. 503–508
R. Roy, A. Tiwari, J. Corbett: Designing a turbine blade cooling system using a generalised regression genetic algorithm, CIRP Ann. Manuf. Technol. 52(1), 415–418 (2003)
J. Mehnen, K. Weinert, H.-W. Meyer: Evolutionary optimization of deep drilling strategies for mold temperature control, 3rd CIRP Int. Semin. Intell. Comput. Manuf. Eng. (2002)
T. Michelitsch, J. Mehnen: Evolutionary optimization of cooling circuit layouts based on the electrolytic tank method, 4th CIRP Int. Semin. Intell. Comput. Manuf. Eng. (2004)
K. Weinert, A. Zabel, P. Kersting, T. Michelitsch, T. Wagner: On the use of problem-specific candidate generators for the hybrid optimization of multi-objective production engineering problems, Evol. Comput. 17(4), 527–544 (2009)
J. Mehnen, T. Michelitsch, K. Weinert: Production engineering: Optimal structures of injection molding tools. In: Emergence, Analysis and Optimization of Structures – Concepts and Strategies across Disciplines, ed. by K. Lucas, P. Roosen (Springer, Berlin, Heidelberg 2010) pp. 75–90
T. Michelitsch, J. Mehnen: Optimization of production engineering problems with discontinuous cost-functions, 5th CIRP Int. Semin. Intell. Comput. Manuf. Eng. (2006) pp. 275–280
K. Deb, A. Pratap, S. Agarwal, T. Meyarivan: A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)
N. Beume, B. Naujoks, M. Emmerich: SMS-EMOA: Multiobjective selection based on dominated hypervolume, Eur. J. Oper. Res. 181(3), 1653–1669 (2007)
J. Mehnen, T. Michelitsch, T. Bartz-Beielstein, N. Henkenjohann: Systematic analyses of multi-objective evolutionary algorithms applied to real-world problems using statistical design of experiments, 4th CIRP Int. Semin. Intell. Comput. Manuf. Eng. (2004)
J. Mehnen, H. Trautmann: Integration of expert's preferences in pareto optimization by desirability function techniques, 5th CIRP Int. Semin. Intell. Comput. Manuf. Eng. (2006) pp. 293–298
T. Michelitsch, T. Wagner, D. Biermann, C. Hoffmann: Designing memetic algorithms for real-world applications using self-imposed constraints, Proc. 2007 IEEE Congr. Evol. Comput. (2007) pp. 3050–3057
D. Biermann, R. Joliet, T. Michelitsch, T. Wagner: Sequential parameter optimization of an evolution strategy for the design of mold temperature control systems, Proc. 2010 IEEE Congr. Evol. Comput. (2010) pp. 4071–4078
D. Biermann, R. Joliet, T. Michelitsch: Interactive manipulation of target functions for the optimization of mold temperature control systems, 2nd Int. Conf. Manuf. Eng., Qual. Prod. Syst. (2010) pp. 239–244
H. Dürr, I. Jurklies: A fuzzy expert system assist the CAD/CAM/CAE process chain in the tool and mould making industry, 3rd CIRP Int. Semin. Intell. Comput. Manuf. Eng. (2002)
K. Weinert, J. Mehnen, F. Albersmann, P. Drerup: New solutions for surface reconstruction from discrete point data by means of computational intelligence, CIRP Int. Seminar Intell. Comput. Manuf. Eng. (1998) pp. 431–438
K. Weinert, J. Mehnen, M. Schneider: Evolutionary optimization of approximating triangulations for surface reconstruction from unstructured 3D Data, Proc. 6th Jt. Conf. Inf. Sci. (2002) pp. 578–581
L. Piegl, W. Tiller: The NURBS Book (Springer, Berlin, Heidelberg 1997)
K. Weinert, J. Mehnen: NURBS-surface approximation of discrete 3D-point data by means of evolutionary algorithms, 2nd CIRP Int. Semin. Intell. Comput. Manuf. Eng. (2000) pp. 263–268
T. Beielstein, J. Mehnen, L. Schönemann, H.-P. Schwefel, T. Surmann, K. Weinert, D. Wiesmann: Design of evolutionary algorithms and applications in surface reconstruction. In: Advances in Computational Intelligence: Theory and Practice, ed. by H.-P. Schwefel, I. Wegener, K. Weinert (Springer, Berlin, Heidelberg 2003) pp. 164–193
T. Wagner, T. Michelitsch, A. Sacharow: On the design of optimisers for surface reconstruction, Proc. 9th Annu. Genet. Evol. Comput. Conf. (2007) pp. 2195–2202
K. Weinert, T. Surmann, J. Mehnen: Evolutionary surface reconstruction using CSG-NURBS-Hybrids, Proc. Genet. Evol. Comput. Conf. (2001) pp. 1456–1463
C.M. Hoffmann: Geometric & Solid Modeling (Kaufmann Publ., San Mateo 1989)
K. Weinert, A. Zabel, H. Müller, P. Kersting: Optimizing NC tool paths for five-axis milling using evolutionary algorithms on wavelets, 8th Annu. Genet. Evol. Comput. Conf. (2006) pp. 1809–1816
K. Weinert, M. Stautner: Generating multiaxis tool paths for die and mold making with evolutionary algorithms, Lect. Notes Comput. Sci. 3103, 1287–1298 (2004)
K. Weinert, M. Stautner: A new system optimizing tool paths for multi-axis die and mould making by using evolutionary algorithms, production engineering, Res. Dev. 12(1), 15–20 (2005)
A. Zabel, M. Stautner: Optimizing the multi-axis milling process via evolutionary algorithms, Berichte aus dem IWU, 8th CIRP Int. Workshop Model. Mach. Oper. (2005) pp. 363–370
A. Zabel, H. Müller, M. Stautner, P. Kersting: Improvement of machine tool movements for simultaneous five-axes milling, 5th CIRP Inter. Semin. Intell. Comput. Manuf. Eng. (2006) pp. 159–164
J. Mehnen, R. Roy, P. Kersting, T. Wagner: ICSPEA: Evolutionary five-axis milling path optimisation, 9th Annu. Genet. Evol. Comput. Conf. (2007) pp. 2122–2128
D. Biermann, A. Zabel, T. Michelitsch, P. Kersting: Intelligent process planning methods for the manufacturing of moulds, Inter. J. Comput. Appl. Technol. 40(1/2), 64–70 (2011)
T. Hastie, R. Tibshirani, J. Friedman: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edn. (Springer, Berlin, Heidelberg 2009)
M. Gheorghe, C. Neagu, S. Antoniu, C. Ionita: Modeling of abrasive jet drilling by applying a neural network method, 2nd CIRP Int. Seminar Intell. Comput. Manuf. Eng. (2000) pp. 221–226
S.L. Campanelli, A.D. Ludovico, C. Bonserio, P. Cavalluzzi: Artificial neural network modelling of the laser milling process, 5th CIRP Int. Semin. Intell. Comput. Manuf. Eng. (2006) pp. 107–111
G. Casalino, A.D. Ludovico, F.M.C. Minutolo, A. Rotondo: On the numerical modelling of a milling operation: Data recoveringand interpolation, 5th CIRP Int. Semin. Intell. Comput. Manuf. Eng. (2006) pp. 193–197
P. Clayton, M.A. Elbestawi, T.I. El-Wardany, D. Viens: An innovative calibration technique using neural networks for a mechanical model of the 5-Axis milling process, 2nd CIRP Int. Semin. Intell. Comput. Manuf. Eng. (2000) pp. 391–396
G. Casalino, A.D. Ludovico: Tool life estimation in single point turning using artificial neural networks, 4th CIRP Int. Semin. Intell. Comput. Manuf. Eng. (2004)
G. Ambroglio, D. Umbrello, L. Filice: Diffusion wear modelling in machining using ANN, 5th CIRP Int. Semin. Intell. Comput. Manuf. Eng. (2006) pp. 69–73
C. Bruni, A. Forcellese, F. Gabrielli, M. Simoncini: Thermal error prediction in a machining center using statistical and neural network-based models, 4th CIRP Int. Semin. Intell. Comput. Manuf. Eng. (2004)
N. Hansen, A. Ostermeier: Completely derandomized self-adaptation in evolution strategies, Evol. Comput. 9(2), 159–195 (2001)
D. Biermann, K. Weinert, T. Wagner: Model-based optimization revisited: Towards real-world processes, Proc. 2008 IEEE Congr. Evol. Comput. (2008) pp. 2980–2987
O. Kramer: Covariance matrix self-adaptation and kernel regression – perspectives of evolutionary optimization in kernel machines, J. Fundam. Inform. 98(1), 87–106 (2010)
T. Özel, Y. Karpat: Identification of constitutive material model parameters for high-strain rate metal cutting conditions using evolutionary computational algorithms, Mater. Manuf. Process. 22, 659–667 (2007)
D. Biermann, T. Surmann, G. Kehl: Oscillator model of machine tools for the simulation of self excited vibrations in machining processes, 1st Int. Conf. Process Mach. Interact. (2008) pp. 23–29
K. Weinert, M. Stautner: Reconstruction of particle flow mechanisms with symbolic regression via genetic programming, Proc. Genet. Evol. Comput. Conf. (2001) pp. 1439–1443
K. Weinert, M. Stautner, J. Mehnen: Automatic generation of mathematical descriptions of cutting processes from video data, production engineering, Res. Dev. 9(2), 55–58 (2002)
R. Teti, G. Giorleo, U. Prisco, D. DAddona: Integration of neural network material modelling into the FEM simulation of metal cutting, 3rd CIRP Int. Semin. Intell. Comput. Manuf. Eng. (2002)
I.S. Jawahir, X. Wang: Development of hybrid predictive models and optimization techniques for machining operations, J. Mater. Process. Technol. 185(1-3), 46–59 (2007)
A.D. Jayal, I.S. Jawahir: Analytical and computational challenges for developing predictive models and optimization strategies for sustainable machining, 7th CIRP Int. Conf. Intell. Comput. Manuf. Eng. (2010)
G. Celano, S. Fichera, E.L. Valvo: Optimization of cutting parameters in multi pass turning operations for continuous forms, 2nd CIRP Int. Semin. Intell. Comput. Manuf. Eng. (2000) pp. 417–422
C.W. Lee, Y.C. Shin: Evolutionary modelling and optimization of grinding processes, Intern. J. Prod. Res. 38(12), 2787–2813 (2000)
X. Wang, Z.J. Da, A.K. Balaji, I.S. Jawahir: Performance-based optimal selection of cutting parameters and cutting tools in multi-pass turning operations using genetic algorithms, 2nd CIRP Int. Semin. Intell. Comput. Manuf. Eng. (2000) pp. 409–414
V. Tandon, H. El-Mounayri, H. Kishawy: NC end milling optimization using evolutionary computation, Int. J. Mach. Tools Manuf. 42(5), 595–605 (2002)
X. Wang, I.S. Jawahir: Web-based optimization of milling operations for the selection of cutting conditions using genetic algorithms, 3rd CIRP Int. Semin. Intell. Comput. Manuf. Eng. (2002)
C.W. Lee, T. Choi, Y.C. Shin: Intelligent model-based optimization of the surface grinding process for heat-treated 4140 steel alloys with aluminum oxide grinding wheels, J. Manuf. Sci. Eng. 125(1), 65–76 (2003)
K. Vijayakumar, G. Prabhaharan, P. Asokan, R. Saravanan: Optimization of multi-pass turning operations using ant colony system, Inter. J. Mach. Tools Manuf. 43(15), 1633–1639 (2003)
X. Wang, A. Kardekar, I.S. Jawahir: Performance-based optimization of multi-pass face-milling operations using genetic algorithms, 4th CIRP Int. Semin. Intell. Comput. Manuf. Eng. (2004)
Y. Karpat, T. Özel: Hard turning optimization using neural network modeling and swarm intelligence, Trans. North Am. Manuf. Res. Inst. 33, 179–186 (2005)
T.-H. Hou, C.-H. Su, W.-L. Liu: Parameters optimization of a nano-particle wet milling process using the Taguchi method, response surface method and genetic algorithm, Powder Technol. 173(3), 153–162 (2007)
J.L. Vigouroux, L. Deshayes, S. Foufou, L.A. Welsh: An approach for optimization of machining parameters under uncertainties using intervals and evolutionary algorithms, CIRP J. Manuf. Syst. 5(36), 395–399 (2007)
A.R. Yildiz: A novel hybrid immune algorithm for global optimization in design and manufacturing, Robot. Comput. Integr. Manuf. 25(2), 261–270 (2009)
R. Roy, J. Mehnen: Dynamic multi-objective optimisation for machining gradient materials, CIRP Ann. Manuf. Technol. 57(1), 429–432 (2008)
F. Cus, J. Balic, U. Zuperl: Hybrid ANFIS-ants system based optimisation of turning parameters, J. Achiev. Mater. Manuf. Eng. 36(1), 79–86 (2009)
R. Datta, K. Deb: A classical-cum-evolutionary multi-objective optimization for optimal machining parameters, Nat. Biol. Inspir. Comput. (2009) pp. 607–612
A.R. Yildiz: A novel particle swarm optimization approach for product design and manufacturing, Inter. J. Adv. Manuf. Technol. 40(5-6), 617–628 (2009)
A.N. Sait: Optimization of machining parameters of GFRP pipes using evolutionary techniques, Int. J. Precis. Eng. Manuf. 11(6), 891–900 (2010)
A.M. Zain, H. Haron, S. Sharif: Application of GA to optimize cutting conditions for minimizing surface roughness in end milling machining process, Expert Syst. Appl. 37(6), 4650–4659 (2010)
K. Deb, R. Datta: Hybrid evolutionary multi-objective optimization of machining parameters, Eng. Optim. 44(6), 685–706 (2011)
A.A. Krimpenis, P.I.K. Liakopoulos, K.C. Giannakoglou, G.-C. Vosniakos: Multi-objective design of optimal sculptured surface rough machining through pareto and nash techniques, 6th Conf. Evol. Determ. Methods Des. Optim. Contr. Appl. Ind. Soc. Probl. (2005)
I.N. Tansel, B. Ozcelik, W.Y. Bao, P. Chen, D. Rincon, S.Y. Yang, A. Yenilmez: Selection of optimal cutting conditions by using GONNS, Inter. J. Mach. Toolls Manuf. 46(1), 26–35 (2006)
F. Cus, U. Zuperl, V. Gecevska: High speed end-milling optimisation using particle swarm intelligence, J. Achiev. Mater. Manuf. Eng. 22(2), 75–78 (2007)
U. Zuperl, F. Cus, V. Gecevska: Optimization of the characteristic parameters in milling using the PSO evolution technique, J. Mech. Eng. 6, 354–368 (2007)
F. Cus, U. Zuperl: Particle swarm intelligence based optimisation of high speed end-milling, Arch. Comput. Mater. Sci. Surf. Eng. 1(3), 148–154 (2009)
T. Wagner, H. Trautmann: Integration of preferences in hypervolume-based multiobjective evolutionary algorithms by means of desirability functions, IEEE Trans. Evol. Comput. 14(5), 688–701 (2010)
E.L. Valvo, B. Martuscelli, M. Piacentini: NC end milling optimization within CAD/CAM system using particle swarm optimization, 4th CIRP Int. Semin. Intell. Comput. Manuf. Eng. (2004) pp. 357–362
E. Borsetto, N. Gramegna: Multi-objective optimization of machining process using advantedge FEM tool, 7th CIRP Int. Conf. Intell. Comput. Manuf. Eng. (2010)
R. Li, M.T.M. Emmerich, J. Eggermont, T. Bäck, M. Schütz, J. Dijkstra, J.H.C. Reiber: Mixed-integer evolution strategies for parameter optimization, Evol. Comput. 21(1), 29–64 (2013)
R.V. Rao, P.J. Pawar: Parameter optimization of a multi-pass milling process using non-traditional optimization algorithms, Appl. Soft Comput. 10(2), 445–456 (2010)
Z.G. Wang, M. Rahman, Y.S. Wong, J. Sun: Optimization of multi-pass milling using parallel genetic algorithm and parallel genetic simulated annealing, Int. J. Mach. Tool. Manuf. 45(15), 1726–1734 (2005)
R. Roy, Y.T. Azene, D. Farrugia, C. Onisa, J. Mehnen: Evolutionary multi-objective design optimisation with real life uncertainty and constraints, CIRP Annu. Manuf. Tech. 58(1), 169–172 (2009)
H.-G. Beyer, B. Sendhoff: Robust optimization - A comprehensive survey, Comput. Method. Appl. Mech. Eng. 196(33/34), 3190–3218 (2007)
S. Mekid, T. Ogedengbe: A review of machine tool accuracy enhancement through error compensation in serial and parallel kinematic machines, Int. J. Precis. Technol. 1(314), 251–286 (2010)
R. Teti, K. Jemielniak, G. O'Donnell, D. Dornfeld: Advanced monitoring of machining operations, CIRP Ann. Manuf. Technol. 59, 717–739 (2010)
H. Müller, D. Biermann, P. Kersting, T. Michelitsch, C. Begau, C. Heuel, R. Joliet, J. Kolanski, M. Kröller, C. Moritz, D. Niggemann, M. Stöber, T. Stönner, J. Varwig, D. Zhai: Intuitive visualization and interactive analysis of pareto sets applied on production engineering. In: Success in Evolutionary Computation, Studies Computational Intelligence, Vol. 92, ed. by A. Yang, Y. Shan, L.T. Bui (Springer, Berlin, Heidelberg 2008) pp. 189–214
H. Pohlheim: Understanding the course and state of evolutionary optimizations using visualization: Ten years of industry experience with evolutionary algorithms, Artif. Life 12(2), 217–227 (2006)
S. Obayashi, D. Sasaki: Evolutionary multi-criterion optimization. In: Visualization and Data Mining of Pareto Solutions Using Self-Organizing Map, ed. by C. Fonseca, P. Fleming, E. Zitzler, L. Thiele, K. Deb (Springer, Berlin Heidelberg 2003) pp. 796–809
K. Deb: Innovization: Discovering Innovative Solution Principles Through Optimization (Springer, Berlin, Heidelberg 2011)
B. Sieben, T. Wagner, D. Biermann: Empirical modeling of hard turning of AISI 6150 steel using design and analysis of computer experiments, Prod. Eng. Res. Dev. 4(2-3), 115–125 (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Biermann, D., Kersting, P., Wagner, T., Zabel, A. (2015). Modeling and Optimization of Machining Problems. In: Kacprzyk, J., Pedrycz, W. (eds) Springer Handbook of Computational Intelligence. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43505-2_59
Download citation
DOI: https://doi.org/10.1007/978-3-662-43505-2_59
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-43504-5
Online ISBN: 978-3-662-43505-2
eBook Packages: EngineeringEngineering (R0)