Skip to main content

Modeling and Optimization of Machining Problems

  • Chapter
Springer Handbook of Computational Intelligence

Part of the book series: Springer Handbooks ((SHB))

  • 11k Accesses

Abstract

In this chapter, applications of computational intelligence methods in the field of production engineering are presented and discussed. Although a special focus is set to applications in machining, most of the approaches can be easily transferred to respective tasks in other fields of production engineering, e. g., forming and coating. The complete process chain of machining operations is considered: The design of the machine, the tool, and the workpiece, the computation of the tool paths, the model selection and parameter optimization of the empirical or simulation-based surrogate model, the actual optimization of the process parameters, the monitoring of important properties during the process, as well as the posterior multicriteria decision analysis. For all these steps, computational intelligence techniques provide established tools. Evolutionary and genetic algorithms are commonly utilized for the internal optimization tasks. Modeling problems can be solved using artificial neural networks. Fuzzy logic represents an intuitive way to formalize expert knowledge in automated decision systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

2-D:

two-dimensional

CAD:

computer-aided design

CAM:

computer-assisted manufacturing

CI:

computational intelligence

CMA:

covariance matrix adaptation

EA:

evolutionary algorithm

EC:

evolutionary computation

ES:

evolution strategy

GA:

genetic algorithm

NC:

numerical control

NN:

neural network

NSGA:

nondominated sorting genetic algorithm

NURBS:

nonuniform rational B-spline

PSO:

particle swarm optimization

SOM:

self-organizing map

References

  1. E. Venkata Rao: Advanced Modeling and Optimization of Manufacturing Processes (Springer, Berlin, Heidelberg 2011)

    Google Scholar 

  2. D. Dasgupta, Z. Michalewicz: Evolutionary Algorithms in Engineering Applications (Springer, Berlin, Heidelberg 1997)

    Book  MATH  Google Scholar 

  3. W. Banzhaf, M. Brameier, M. Stautner, K. Weinert: Genetic programming and its application in machining technology. In: Advances in Computational Intelligence: Theory and Practice, ed. by H.-P. Schwefel, I. Wegener, K. Weinert (Springer, Berlin, Heidelberg 2003) pp. 194–244, Chap. 7

    Chapter  Google Scholar 

  4. I. Mukherjee, P. Ray: A review of optimization techniques in metal cutting processes, Comput. Ind. Eng. 50(1-2), 15–34 (2006)

    Article  Google Scholar 

  5. H. Aytug, M. Khouja, F.E. Vergara: Use of genetic algorithms to solve production and operations management problems: A review, Int. J. Prod. Res. 41(17), 3955–4009 (2003)

    Article  Google Scholar 

  6. P. Kersting, A. Zabel: Optimizing NC-tool paths for simultaneous five-axis milling based on multi-population multi-objective evolutionary algorithms, Adv. Eng. Softw. 40(6), 452–463 (2009)

    Article  MATH  Google Scholar 

  7. R. Roy, S. Hinduja, R. Teti: Recent advances in engineering design optimisation: Challenges and future trends, CIRP Ann. Manuf. Technol. 57(2), 697–715 (2008)

    Article  Google Scholar 

  8. W. Liu, M. Liang: A particle swarm optimization approach to a multi-objective reconfigurable machine tool design problem, IEEE Cong. Evol. Comput. (2006) pp. 2222–2229

    Google Scholar 

  9. S. Mekid, A. Khalid: Robust design with error optimization analysis of CNC micromilling machine, 5th CIRP Int. Semin. Intell. Comput. Manuf. Eng. (2006) pp. 583–587

    Google Scholar 

  10. H. Schulz, A.K. Emrich: Optimization of the chip flute of drilling tools using the principle of genetic algorithms, 2nd CIRP Int. Semin. Intell. Comput. Manuf. Eng. (2000) pp. 371–376

    Google Scholar 

  11. E. Abele, M. Fujara: Simulation-based twist drill design and geometry optimization, CIRP Ann. Manuf. Technol. 59(1), 145–150 (2010)

    Article  Google Scholar 

  12. G. Jared, R. Roy, J. Grau, T. Buchannan: Flexible optimization within the CAD/CAM environment, CIRP Int. Seminar Intell. Comput. Manuf. Eng. (1998) pp. 503–508

    Google Scholar 

  13. R. Roy, A. Tiwari, J. Corbett: Designing a turbine blade cooling system using a generalised regression genetic algorithm, CIRP Ann. Manuf. Technol. 52(1), 415–418 (2003)

    Article  Google Scholar 

  14. J. Mehnen, K. Weinert, H.-W. Meyer: Evolutionary optimization of deep drilling strategies for mold temperature control, 3rd CIRP Int. Semin. Intell. Comput. Manuf. Eng. (2002)

    Google Scholar 

  15. T. Michelitsch, J. Mehnen: Evolutionary optimization of cooling circuit layouts based on the electrolytic tank method, 4th CIRP Int. Semin. Intell. Comput. Manuf. Eng. (2004)

    Google Scholar 

  16. K. Weinert, A. Zabel, P. Kersting, T. Michelitsch, T. Wagner: On the use of problem-specific candidate generators for the hybrid optimization of multi-objective production engineering problems, Evol. Comput. 17(4), 527–544 (2009)

    Article  Google Scholar 

  17. J. Mehnen, T. Michelitsch, K. Weinert: Production engineering: Optimal structures of injection molding tools. In: Emergence, Analysis and Optimization of Structures – Concepts and Strategies across Disciplines, ed. by K. Lucas, P. Roosen (Springer, Berlin, Heidelberg 2010) pp. 75–90

    Google Scholar 

  18. T. Michelitsch, J. Mehnen: Optimization of production engineering problems with discontinuous cost-functions, 5th CIRP Int. Semin. Intell. Comput. Manuf. Eng. (2006) pp. 275–280

    Google Scholar 

  19. K. Deb, A. Pratap, S. Agarwal, T. Meyarivan: A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  20. N. Beume, B. Naujoks, M. Emmerich: SMS-EMOA: Multiobjective selection based on dominated hypervolume, Eur. J. Oper. Res. 181(3), 1653–1669 (2007)

    Article  MATH  Google Scholar 

  21. J. Mehnen, T. Michelitsch, T. Bartz-Beielstein, N. Henkenjohann: Systematic analyses of multi-objective evolutionary algorithms applied to real-world problems using statistical design of experiments, 4th CIRP Int. Semin. Intell. Comput. Manuf. Eng. (2004)

    Google Scholar 

  22. J. Mehnen, H. Trautmann: Integration of expert's preferences in pareto optimization by desirability function techniques, 5th CIRP Int. Semin. Intell. Comput. Manuf. Eng. (2006) pp. 293–298

    Google Scholar 

  23. T. Michelitsch, T. Wagner, D. Biermann, C. Hoffmann: Designing memetic algorithms for real-world applications using self-imposed constraints, Proc. 2007 IEEE Congr. Evol. Comput. (2007) pp. 3050–3057

    Chapter  Google Scholar 

  24. D. Biermann, R. Joliet, T. Michelitsch, T. Wagner: Sequential parameter optimization of an evolution strategy for the design of mold temperature control systems, Proc. 2010 IEEE Congr. Evol. Comput. (2010) pp. 4071–4078

    Google Scholar 

  25. D. Biermann, R. Joliet, T. Michelitsch: Interactive manipulation of target functions for the optimization of mold temperature control systems, 2nd Int. Conf. Manuf. Eng., Qual. Prod. Syst. (2010) pp. 239–244

    Google Scholar 

  26. H. Dürr, I. Jurklies: A fuzzy expert system assist the CAD/CAM/CAE process chain in the tool and mould making industry, 3rd CIRP Int. Semin. Intell. Comput. Manuf. Eng. (2002)

    Google Scholar 

  27. K. Weinert, J. Mehnen, F. Albersmann, P. Drerup: New solutions for surface reconstruction from discrete point data by means of computational intelligence, CIRP Int. Seminar Intell. Comput. Manuf. Eng. (1998) pp. 431–438

    Google Scholar 

  28. K. Weinert, J. Mehnen, M. Schneider: Evolutionary optimization of approximating triangulations for surface reconstruction from unstructured 3D Data, Proc. 6th Jt. Conf. Inf. Sci. (2002) pp. 578–581

    Google Scholar 

  29. L. Piegl, W. Tiller: The NURBS Book (Springer, Berlin, Heidelberg 1997)

    Book  MATH  Google Scholar 

  30. K. Weinert, J. Mehnen: NURBS-surface approximation of discrete 3D-point data by means of evolutionary algorithms, 2nd CIRP Int. Semin. Intell. Comput. Manuf. Eng. (2000) pp. 263–268

    Google Scholar 

  31. T. Beielstein, J. Mehnen, L. Schönemann, H.-P. Schwefel, T. Surmann, K. Weinert, D. Wiesmann: Design of evolutionary algorithms and applications in surface reconstruction. In: Advances in Computational Intelligence: Theory and Practice, ed. by H.-P. Schwefel, I. Wegener, K. Weinert (Springer, Berlin, Heidelberg 2003) pp. 164–193

    Google Scholar 

  32. T. Wagner, T. Michelitsch, A. Sacharow: On the design of optimisers for surface reconstruction, Proc. 9th Annu. Genet. Evol. Comput. Conf. (2007) pp. 2195–2202

    Google Scholar 

  33. K. Weinert, T. Surmann, J. Mehnen: Evolutionary surface reconstruction using CSG-NURBS-Hybrids, Proc. Genet. Evol. Comput. Conf. (2001) pp. 1456–1463

    Google Scholar 

  34. C.M. Hoffmann: Geometric & Solid Modeling (Kaufmann Publ., San Mateo 1989)

    Google Scholar 

  35. K. Weinert, A. Zabel, H. Müller, P. Kersting: Optimizing NC tool paths for five-axis milling using evolutionary algorithms on wavelets, 8th Annu. Genet. Evol. Comput. Conf. (2006) pp. 1809–1816

    Google Scholar 

  36. K. Weinert, M. Stautner: Generating multiaxis tool paths for die and mold making with evolutionary algorithms, Lect. Notes Comput. Sci. 3103, 1287–1298 (2004)

    Article  Google Scholar 

  37. K. Weinert, M. Stautner: A new system optimizing tool paths for multi-axis die and mould making by using evolutionary algorithms, production engineering, Res. Dev. 12(1), 15–20 (2005)

    Google Scholar 

  38. A. Zabel, M. Stautner: Optimizing the multi-axis milling process via evolutionary algorithms, Berichte aus dem IWU, 8th CIRP Int. Workshop Model. Mach. Oper. (2005) pp. 363–370

    Google Scholar 

  39. A. Zabel, H. Müller, M. Stautner, P. Kersting: Improvement of machine tool movements for simultaneous five-axes milling, 5th CIRP Inter. Semin. Intell. Comput. Manuf. Eng. (2006) pp. 159–164

    Google Scholar 

  40. J. Mehnen, R. Roy, P. Kersting, T. Wagner: ICSPEA: Evolutionary five-axis milling path optimisation, 9th Annu. Genet. Evol. Comput. Conf. (2007) pp. 2122–2128

    Google Scholar 

  41. D. Biermann, A. Zabel, T. Michelitsch, P. Kersting: Intelligent process planning methods for the manufacturing of moulds, Inter. J. Comput. Appl. Technol. 40(1/2), 64–70 (2011)

    Article  Google Scholar 

  42. T. Hastie, R. Tibshirani, J. Friedman: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edn. (Springer, Berlin, Heidelberg 2009)

    Book  MATH  Google Scholar 

  43. M. Gheorghe, C. Neagu, S. Antoniu, C. Ionita: Modeling of abrasive jet drilling by applying a neural network method, 2nd CIRP Int. Seminar Intell. Comput. Manuf. Eng. (2000) pp. 221–226

    Google Scholar 

  44. S.L. Campanelli, A.D. Ludovico, C. Bonserio, P. Cavalluzzi: Artificial neural network modelling of the laser milling process, 5th CIRP Int. Semin. Intell. Comput. Manuf. Eng. (2006) pp. 107–111

    Google Scholar 

  45. G. Casalino, A.D. Ludovico, F.M.C. Minutolo, A. Rotondo: On the numerical modelling of a milling operation: Data recoveringand interpolation, 5th CIRP Int. Semin. Intell. Comput. Manuf. Eng. (2006) pp. 193–197

    Google Scholar 

  46. P. Clayton, M.A. Elbestawi, T.I. El-Wardany, D. Viens: An innovative calibration technique using neural networks for a mechanical model of the 5-Axis milling process, 2nd CIRP Int. Semin. Intell. Comput. Manuf. Eng. (2000) pp. 391–396

    Google Scholar 

  47. G. Casalino, A.D. Ludovico: Tool life estimation in single point turning using artificial neural networks, 4th CIRP Int. Semin. Intell. Comput. Manuf. Eng. (2004)

    Google Scholar 

  48. G. Ambroglio, D. Umbrello, L. Filice: Diffusion wear modelling in machining using ANN, 5th CIRP Int. Semin. Intell. Comput. Manuf. Eng. (2006) pp. 69–73

    Google Scholar 

  49. C. Bruni, A. Forcellese, F. Gabrielli, M. Simoncini: Thermal error prediction in a machining center using statistical and neural network-based models, 4th CIRP Int. Semin. Intell. Comput. Manuf. Eng. (2004)

    Google Scholar 

  50. N. Hansen, A. Ostermeier: Completely derandomized self-adaptation in evolution strategies, Evol. Comput. 9(2), 159–195 (2001)

    Article  Google Scholar 

  51. D. Biermann, K. Weinert, T. Wagner: Model-based optimization revisited: Towards real-world processes, Proc. 2008 IEEE Congr. Evol. Comput. (2008) pp. 2980–2987

    Google Scholar 

  52. O. Kramer: Covariance matrix self-adaptation and kernel regression – perspectives of evolutionary optimization in kernel machines, J. Fundam. Inform. 98(1), 87–106 (2010)

    MathSciNet  MATH  Google Scholar 

  53. T. Özel, Y. Karpat: Identification of constitutive material model parameters for high-strain rate metal cutting conditions using evolutionary computational algorithms, Mater. Manuf. Process. 22, 659–667 (2007)

    Article  Google Scholar 

  54. D. Biermann, T. Surmann, G. Kehl: Oscillator model of machine tools for the simulation of self excited vibrations in machining processes, 1st Int. Conf. Process Mach. Interact. (2008) pp. 23–29

    Google Scholar 

  55. K. Weinert, M. Stautner: Reconstruction of particle flow mechanisms with symbolic regression via genetic programming, Proc. Genet. Evol. Comput. Conf. (2001) pp. 1439–1443

    Google Scholar 

  56. K. Weinert, M. Stautner, J. Mehnen: Automatic generation of mathematical descriptions of cutting processes from video data, production engineering, Res. Dev. 9(2), 55–58 (2002)

    Google Scholar 

  57. R. Teti, G. Giorleo, U. Prisco, D. DAddona: Integration of neural network material modelling into the FEM simulation of metal cutting, 3rd CIRP Int. Semin. Intell. Comput. Manuf. Eng. (2002)

    Google Scholar 

  58. I.S. Jawahir, X. Wang: Development of hybrid predictive models and optimization techniques for machining operations, J. Mater. Process. Technol. 185(1-3), 46–59 (2007)

    Article  Google Scholar 

  59. A.D. Jayal, I.S. Jawahir: Analytical and computational challenges for developing predictive models and optimization strategies for sustainable machining, 7th CIRP Int. Conf. Intell. Comput. Manuf. Eng. (2010)

    Google Scholar 

  60. G. Celano, S. Fichera, E.L. Valvo: Optimization of cutting parameters in multi pass turning operations for continuous forms, 2nd CIRP Int. Semin. Intell. Comput. Manuf. Eng. (2000) pp. 417–422

    Google Scholar 

  61. C.W. Lee, Y.C. Shin: Evolutionary modelling and optimization of grinding processes, Intern. J. Prod. Res. 38(12), 2787–2813 (2000)

    Article  Google Scholar 

  62. X. Wang, Z.J. Da, A.K. Balaji, I.S. Jawahir: Performance-based optimal selection of cutting parameters and cutting tools in multi-pass turning operations using genetic algorithms, 2nd CIRP Int. Semin. Intell. Comput. Manuf. Eng. (2000) pp. 409–414

    Google Scholar 

  63. V. Tandon, H. El-Mounayri, H. Kishawy: NC end milling optimization using evolutionary computation, Int. J. Mach. Tools Manuf. 42(5), 595–605 (2002)

    Article  Google Scholar 

  64. X. Wang, I.S. Jawahir: Web-based optimization of milling operations for the selection of cutting conditions using genetic algorithms, 3rd CIRP Int. Semin. Intell. Comput. Manuf. Eng. (2002)

    Google Scholar 

  65. C.W. Lee, T. Choi, Y.C. Shin: Intelligent model-based optimization of the surface grinding process for heat-treated 4140 steel alloys with aluminum oxide grinding wheels, J. Manuf. Sci. Eng. 125(1), 65–76 (2003)

    Article  Google Scholar 

  66. K. Vijayakumar, G. Prabhaharan, P. Asokan, R. Saravanan: Optimization of multi-pass turning operations using ant colony system, Inter. J. Mach. Tools Manuf. 43(15), 1633–1639 (2003)

    Article  Google Scholar 

  67. X. Wang, A. Kardekar, I.S. Jawahir: Performance-based optimization of multi-pass face-milling operations using genetic algorithms, 4th CIRP Int. Semin. Intell. Comput. Manuf. Eng. (2004)

    Google Scholar 

  68. Y. Karpat, T. Özel: Hard turning optimization using neural network modeling and swarm intelligence, Trans. North Am. Manuf. Res. Inst. 33, 179–186 (2005)

    Google Scholar 

  69. T.-H. Hou, C.-H. Su, W.-L. Liu: Parameters optimization of a nano-particle wet milling process using the Taguchi method, response surface method and genetic algorithm, Powder Technol. 173(3), 153–162 (2007)

    Article  Google Scholar 

  70. J.L. Vigouroux, L. Deshayes, S. Foufou, L.A. Welsh: An approach for optimization of machining parameters under uncertainties using intervals and evolutionary algorithms, CIRP J. Manuf. Syst. 5(36), 395–399 (2007)

    Google Scholar 

  71. A.R. Yildiz: A novel hybrid immune algorithm for global optimization in design and manufacturing, Robot. Comput. Integr. Manuf. 25(2), 261–270 (2009)

    Article  Google Scholar 

  72. R. Roy, J. Mehnen: Dynamic multi-objective optimisation for machining gradient materials, CIRP Ann. Manuf. Technol. 57(1), 429–432 (2008)

    Article  Google Scholar 

  73. F. Cus, J. Balic, U. Zuperl: Hybrid ANFIS-ants system based optimisation of turning parameters, J. Achiev. Mater. Manuf. Eng. 36(1), 79–86 (2009)

    Google Scholar 

  74. R. Datta, K. Deb: A classical-cum-evolutionary multi-objective optimization for optimal machining parameters, Nat. Biol. Inspir. Comput. (2009) pp. 607–612

    Google Scholar 

  75. A.R. Yildiz: A novel particle swarm optimization approach for product design and manufacturing, Inter. J. Adv. Manuf. Technol. 40(5-6), 617–628 (2009)

    Article  Google Scholar 

  76. A.N. Sait: Optimization of machining parameters of GFRP pipes using evolutionary techniques, Int. J. Precis. Eng. Manuf. 11(6), 891–900 (2010)

    Article  Google Scholar 

  77. A.M. Zain, H. Haron, S. Sharif: Application of GA to optimize cutting conditions for minimizing surface roughness in end milling machining process, Expert Syst. Appl. 37(6), 4650–4659 (2010)

    Article  Google Scholar 

  78. K. Deb, R. Datta: Hybrid evolutionary multi-objective optimization of machining parameters, Eng. Optim. 44(6), 685–706 (2011)

    Article  MathSciNet  Google Scholar 

  79. A.A. Krimpenis, P.I.K. Liakopoulos, K.C. Giannakoglou, G.-C. Vosniakos: Multi-objective design of optimal sculptured surface rough machining through pareto and nash techniques, 6th Conf. Evol. Determ. Methods Des. Optim. Contr. Appl. Ind. Soc. Probl. (2005)

    Google Scholar 

  80. I.N. Tansel, B. Ozcelik, W.Y. Bao, P. Chen, D. Rincon, S.Y. Yang, A. Yenilmez: Selection of optimal cutting conditions by using GONNS, Inter. J. Mach. Toolls Manuf. 46(1), 26–35 (2006)

    Article  Google Scholar 

  81. F. Cus, U. Zuperl, V. Gecevska: High speed end-milling optimisation using particle swarm intelligence, J. Achiev. Mater. Manuf. Eng. 22(2), 75–78 (2007)

    Google Scholar 

  82. U. Zuperl, F. Cus, V. Gecevska: Optimization of the characteristic parameters in milling using the PSO evolution technique, J. Mech. Eng. 6, 354–368 (2007)

    Google Scholar 

  83. F. Cus, U. Zuperl: Particle swarm intelligence based optimisation of high speed end-milling, Arch. Comput. Mater. Sci. Surf. Eng. 1(3), 148–154 (2009)

    Google Scholar 

  84. T. Wagner, H. Trautmann: Integration of preferences in hypervolume-based multiobjective evolutionary algorithms by means of desirability functions, IEEE Trans. Evol. Comput. 14(5), 688–701 (2010)

    Article  Google Scholar 

  85. E.L. Valvo, B. Martuscelli, M. Piacentini: NC end milling optimization within CAD/CAM system using particle swarm optimization, 4th CIRP Int. Semin. Intell. Comput. Manuf. Eng. (2004) pp. 357–362

    Google Scholar 

  86. E. Borsetto, N. Gramegna: Multi-objective optimization of machining process using advantedge FEM tool, 7th CIRP Int. Conf. Intell. Comput. Manuf. Eng. (2010)

    Google Scholar 

  87. R. Li, M.T.M. Emmerich, J. Eggermont, T. Bäck, M. Schütz, J. Dijkstra, J.H.C. Reiber: Mixed-integer evolution strategies for parameter optimization, Evol. Comput. 21(1), 29–64 (2013)

    Article  Google Scholar 

  88. R.V. Rao, P.J. Pawar: Parameter optimization of a multi-pass milling process using non-traditional optimization algorithms, Appl. Soft Comput. 10(2), 445–456 (2010)

    Article  Google Scholar 

  89. Z.G. Wang, M. Rahman, Y.S. Wong, J. Sun: Optimization of multi-pass milling using parallel genetic algorithm and parallel genetic simulated annealing, Int. J. Mach. Tool. Manuf. 45(15), 1726–1734 (2005)

    Article  Google Scholar 

  90. R. Roy, Y.T. Azene, D. Farrugia, C. Onisa, J. Mehnen: Evolutionary multi-objective design optimisation with real life uncertainty and constraints, CIRP Annu. Manuf. Tech. 58(1), 169–172 (2009)

    Article  Google Scholar 

  91. H.-G. Beyer, B. Sendhoff: Robust optimization - A comprehensive survey, Comput. Method. Appl. Mech. Eng. 196(33/34), 3190–3218 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  92. S. Mekid, T. Ogedengbe: A review of machine tool accuracy enhancement through error compensation in serial and parallel kinematic machines, Int. J. Precis. Technol. 1(314), 251–286 (2010)

    Article  Google Scholar 

  93. R. Teti, K. Jemielniak, G. O'Donnell, D. Dornfeld: Advanced monitoring of machining operations, CIRP Ann. Manuf. Technol. 59, 717–739 (2010)

    Article  Google Scholar 

  94. H. Müller, D. Biermann, P. Kersting, T. Michelitsch, C. Begau, C. Heuel, R. Joliet, J. Kolanski, M. Kröller, C. Moritz, D. Niggemann, M. Stöber, T. Stönner, J. Varwig, D. Zhai: Intuitive visualization and interactive analysis of pareto sets applied on production engineering. In: Success in Evolutionary Computation, Studies Computational Intelligence, Vol. 92, ed. by A. Yang, Y. Shan, L.T. Bui (Springer, Berlin, Heidelberg 2008) pp. 189–214

    Chapter  Google Scholar 

  95. H. Pohlheim: Understanding the course and state of evolutionary optimizations using visualization: Ten years of industry experience with evolutionary algorithms, Artif. Life 12(2), 217–227 (2006)

    Article  Google Scholar 

  96. S. Obayashi, D. Sasaki: Evolutionary multi-criterion optimization. In: Visualization and Data Mining of Pareto Solutions Using Self-Organizing Map, ed. by C. Fonseca, P. Fleming, E. Zitzler, L. Thiele, K. Deb (Springer, Berlin Heidelberg 2003) pp. 796–809

    Google Scholar 

  97. K. Deb: Innovization: Discovering Innovative Solution Principles Through Optimization (Springer, Berlin, Heidelberg 2011)

    MATH  Google Scholar 

  98. B. Sieben, T. Wagner, D. Biermann: Empirical modeling of hard turning of AISI 6150 steel using design and analysis of computer experiments, Prod. Eng. Res. Dev. 4(2-3), 115–125 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Biermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Biermann, D., Kersting, P., Wagner, T., Zabel, A. (2015). Modeling and Optimization of Machining Problems. In: Kacprzyk, J., Pedrycz, W. (eds) Springer Handbook of Computational Intelligence. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43505-2_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43505-2_59

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43504-5

  • Online ISBN: 978-3-662-43505-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics