Skip to main content

Part of the book series: Springer Handbooks ((SHB))

  • 10k Accesses

Abstract

Many practical applications can make use of robot collectives that can manipulate objects and construct structures. Examples include applications in warehousing, truck loading and unloading, transporting large objects in industrial environments, and assembly of large-scale structures. Creating such systems, however, can be challenging. When collective robots work together to manipulate physical objects in the environment, their interactions necessarily become more tightly coupled. This need for tight coupling can lead to important control challenges, since actions by some robots can directly interfere with those of other robots. This chapter explores techniques that have been developed to enable robot swarms to effectively manipulate and construct objects in the environment. The focus in this chapter is on decentralized manipulation and construction techniques that would likely scale to large robot swarms (at least 10 robots), rather than approaches aimed primarily at smaller teams that attempt the same objectives. This chapter first discusses the swarm task of object transportation; in this domain, the objective is for robots to collectively move objects through the environment to a goal destination. The chapter then discusses object clustering and sorting, which requires objects in the environment to be aggregated at one or more locations in the environment. The final task discussed is that of collective construction and wall building, in which robots work together to build a prespecified structure. While these different tasks vary in their specific objectives for collective manipulation , they also have several commonalities. This chapter explores the state of the art in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-D:

two-dimensional

3-D:

three-dimensional

BeRoSH:

behavior-based multiple robot system with host for object manipulation

References

  1. C.R. Kube, H. Zhang: Collective robotics: From social insects to robots, Adapt. Behav. 2(2), 189–218 (1993)

    Article  Google Scholar 

  2. D. Stilwell, J.S. Bay: Toward the development of a material transport system using swarms of ant-like robots, IEEE Int. Conf. Robot. Autom. (1993) pp. 766–771

    Google Scholar 

  3. P.J. Johnson, J.S. Bay: Distributed control of simulated autonomous mobile robot collectives in payload transportation, Auton. Robot. 2(1), 43–63 (1995)

    Article  Google Scholar 

  4. Z. Wang, E. Nakano, T. Matsukawa: Realizing cooperative object manipulation using multiple behaviour-based robots, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (1996) pp. 310–317

    Google Scholar 

  5. K. Kosuge, T. Oosumi: Decentralized control of multiple robots handling an object, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (1996) pp. 318–323

    Google Scholar 

  6. N. Miyata, J. Ota, Y. Aiyama, J. Sasaki, T. Arai: Cooperative transport system with regrasping car-like mobile robots, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (1997) pp. 1754–1761

    Google Scholar 

  7. C.R. Kube, E. Bonabeau: Cooperative transport by ants and robots, Robot. Auton. Syst. 30(1), 85–101 (2000)

    Article  Google Scholar 

  8. R. Groß, M. Dorigo: Towards group transport by swarms of robots, Int. J. Bio-Inspir. Comput. 1(1), 1–13 (2009)

    Article  Google Scholar 

  9. Y. Mohan, S.G. Ponnambalam: An extensive review of research in swarm robotics, World Congr. Nat. Biol. Inspir. Comput. 2009 (2009) pp. 140–145

    Google Scholar 

  10. D. Nardi, A. Farinelli, L. Iocchi: Multirobot systems: A classification focused on coordination, IEEE Trans. Syst. Man Cybern. B 34(5), 2015–2028 (2004)

    Article  Google Scholar 

  11. L.E. Parker: ALLIANCE: An architecture for fault tolerant, cooperative control of heterogeneous mobile robots, Proc. IEEE/RSJ/GI Int. Conf. Intell. Robot. Syst. (1994) pp. 776–783

    Google Scholar 

  12. L.E. Parker: Lifelong adaptation in heterogeneous teams: Response to continual variation in individual robot performance, Auton. Robot. 8(3), 239–269 (2000)

    Article  Google Scholar 

  13. B.P. Gerkey, M.J. Mataric: Sold! Auction methods for multi-robot coordination, IEEE Trans. Robot. Autom. 18(5), 758–768 (2002)

    Article  Google Scholar 

  14. S. Yamada, J. Saito: Adaptive action selection without explicit communication for multirobot box-pushing, IEEE Trans. Syst. Man Cybern. C 31(3), 398–404 (2001)

    Article  Google Scholar 

  15. B. Donald, J. Jennings, D. Rus: Analyzing teams of cooperating mobile robots, IEEE Int. Conf. Robot. Autom. (1994) pp. 1896–1903

    Google Scholar 

  16. R. Simmons, S. Singh, D. Hershberger, J. Ramos, T. Smith: First results in the coordination of heterogeneous robots for large-scale assembly, ISER 7th Int. Symp. Exp. Robot. (2000)

    Google Scholar 

  17. R.G. Brown, J.S. Jennings: A pusher/steerer model for strongly cooperative mobile robot manipulation, Proc. 1995 IEEE Int. Conf. Intell. Robot. Syst. (1995) pp. 562–568

    Google Scholar 

  18. K. Böhringer, R. Brown, B. Donald, J. Jennings, D. Rus: Distributed robotic manipulation: Experiments in minimalism, Lect. Notes Comput. Sci. 223, 11–25 (1997)

    Google Scholar 

  19. D. Rus, B. Donald, J. Jennings: Moving furniture with teams of autonomous robots, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (1995) pp. 235–242

    Google Scholar 

  20. C. Jones, M.J. Mataric: Automatic synthesis of communication-based coordinated multi-robot systems, Proc. IEEE/RJS Int. Conf. Intell. Robot. Syst. (2004) pp. 381–387

    Google Scholar 

  21. A. Bicchi: On the closure properties of robotic grasping, Int. J. Robot. Res. 14(4), 319–334 (1995)

    Article  Google Scholar 

  22. T.G. Sugar, V. Kumar: Control of cooperating mobile manipulators, IEEE Trans. Robot. Autom. 18(1), 94–103 (2002)

    Article  Google Scholar 

  23. A.J. Ijspeert, A. Martinoli, A. Billard, L.M. Gambardella: Collaboration through the exploitation of local interactions in autonomous collective robotics: The stick pulling experiment, Auton. Robot. 11(2), 149–171 (2001)

    Article  MATH  Google Scholar 

  24. A. Martinoli, K. Easton, W. Agassounon: Modeling swarm robotic systems: A case study in collaborative distributed manipulation, Int. J. Robot. Res. 23(4/5), 415–436 (2004)

    Article  Google Scholar 

  25. F. Mondada, L.M. Gambardella, D. Floreano, S. Nolfi, J.L. Deneuborg, M. Dorigo: The cooperation of swarm-bots: Physical interactions in collective robotics, IEEE Robot. Autom. Mag. 12(2), 21–28 (2005)

    Article  Google Scholar 

  26. R. Groß, E. Tuci, M. Dorigo, M. Bonani, F. Mondada: Object transport by modular robots that self-assemble, IEEE Int. Conf. Robot. Autom. (2006) pp. 2558–2564

    Google Scholar 

  27. S. Nouyan, R. Groß, M. Bonani, F. Mondada, M. Dorigo: Group transport along a robot chain in a self-organised robot colony, Proc. 9th Int. Conf. Intell. Auton. Syst. (2006) pp. 433–442

    Google Scholar 

  28. R. Groß, M. Dorigo: Evolution of solitary and group transport behaviors for autonomous robots capable of self-assembling, Adapt. Behav. 16(5), 285–305 (2008)

    Article  Google Scholar 

  29. A. Campo, S. Nouyan, M. Birattari, R. Groß, M. Dorigo: Negotiation of goal direction for cooperative transport, Lect. Notes Comput. Sci. 4150, 191–202 (2006)

    Article  Google Scholar 

  30. J.M. Esposito: Distributed grasp synthesis for swarm manipulation with applications to autonomous tugboats, IEEE Int. Conf. Robot. Autom. (2008) pp. 1489–1494

    Google Scholar 

  31. S. Berman, Q. Lindsey, M.S. Sakar, V. Kumar, S.C. Pratt: Experimental study and modeling of group retrieval in ants as an approach to collective transport in swarm robotic systems, Proc. IEEE 99(9), 1470–1481 (2011)

    Article  Google Scholar 

  32. Z. Wang, V. Kumar: Object closure and manipulation by multiple cooperating mobile robots, IEEE Int. Conf. Robot. Autom. (2002) pp. 394–399

    Google Scholar 

  33. J. Fink, N. Michael, V. Kumar: Composition of vector fields for multi-robot manipulation via caging, Robot. Sci. Syst. (2007) pp. 25–32

    Google Scholar 

  34. Z.D. Wang, V. Kumar: Object closure and manipulation by multiple cooperating mobile robots, IEEE Int. Conf. Robot. Autom. (2002) pp. 394–399

    Google Scholar 

  35. P. Song, V. Kumar: A potential field based approach to multi-robot manipulation, IEEE Int. Conf. Robot. Autom. (2002) pp. 1217–1222

    Google Scholar 

  36. Z. Wang, Y. Hirata, K. Kosuge: Control a rigid caging formation for cooperative object transportation by multiple mobile robots, Proc. IEEE Int. Conf. Robot. Autom. (2004) pp. 1580–1585

    Google Scholar 

  37. O. Holland, C. Melhuish: Stigmergy, self-organization, and sorting in collective robotics, Artif. Life 5(2), 173–202 (1999)

    Article  Google Scholar 

  38. J.L. Deneubourg, S. Goss, N. Franks, A. Sendova-Franks, C. Detrain, L. Chretien: The dynamics of collective sorting robot-like ants and ant-like robots, Proc. 1st Int. Conf. Simul. Adapt. Behav. Anim. Anim. (1990)

    Google Scholar 

  39. R. Beckers, O. Holland, J. Deneubourg: From local actions to global tasks: Stigmergy and collective robotics, Proc. 14th Int. Workshop Synth. Simul. Living Syst. (1994) pp. 181–189

    Google Scholar 

  40. T. Wang, H. Zhang: Multi-robot collective sorting with local sensing, IEEE Intell. Autom. Conf. (2003)

    Google Scholar 

  41. T. Wang, H. Zhang: Collective Sorting with Multiple Robots, IEEE Int. Conf. Robot. Biomim. (2004) pp. 716–720

    Google Scholar 

  42. Y. Yang, M. Kamel: Clustering ensemble using swarm intelligence, IEEE, Swarm Intell. Symp. (2003) pp. 65–71

    Google Scholar 

  43. A. Martinoli, F. Mondada: Collective and cooperative group behaviours: Biologically inspired experiments in robotics, Lect. Notes Comput. Sci. 223, 1–10 (1997)

    Google Scholar 

  44. J. Werfel, R. Nagpal: Three-dimensional construction with mobile robots and modular blocks, Int. J. Robot. Res. 27(3/4), 463–479 (2008)

    Article  Google Scholar 

  45. J. Werfel, Y. Bar-Yam, D. Rus, R. Nagpal: Distributed construction by mobile robots with enhanced building blocks, IEEE Int. Conf. Robot. Autom. (2006) pp. 2787–2794

    Google Scholar 

  46. J. Werfel: Building patterned structures with robot swarms, Proc. 19th Int. Joint Conf. Artif. Intell. (2005) pp. 1495–1502

    Google Scholar 

  47. J. Werfel, R. Nagpal: Extended stigmergy in collective construction, IEEE Intell. Syst. 21(2), 20–28 (2006)

    Article  Google Scholar 

  48. J. Werfel: Building blocks for multi-robot construction, Distrib. Auton. Robot. Syst. 6, 285–294 (2007)

    Google Scholar 

  49. Y. Terada, S. Murata: Automatic modular assembly system and its distributed control, Int. J. Robot. Res. 27, 445–462 (2008)

    Article  Google Scholar 

  50. R.L. Stewart, R.A. Russell: A distributed feedback mechanism to regulate wall construction by a robotic swarm, Adapt. Behav. 14(1), 21–51 (2006)

    Article  Google Scholar 

  51. J. Wawerla, G.S. Sukhatme, M.J. Mataric: Collective construction with multiple robots, IEEE/RSJ Int. Conf. Intell. Robot. Syst. (2002) pp. 2696–2701

    Chapter  Google Scholar 

  52. R.L. Stewart, R.A. Russell: Building a loose wall structure with a robotic swarm using a spatio-temporal varying template, IEEE/RSJ Int. Conf. Intell. Robot. Syst. (2004) pp. 712–716

    Google Scholar 

  53. C.A.C. Parker, H. Zhang, C.R. Kube: Blind bulldozing: Multiple robot nest construction, IEEE/RSJ Int. Conf. Intell. Robot. Syst. (2003) pp. 2010–2015

    Google Scholar 

  54. T. Huntsberger, G. Rodriguez, P.S. Schenker: Robotics challenges for robotic and human mars exploration, Proc. Robot. (2000) pp. 340–346

    Google Scholar 

  55. R.A. Brooks, P. Maes, M.J. Mataric, G. More: Lunar based construction robots, Proc. Int. Conf. Intell. Robot. Syst. (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynne Parker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Parker, L. (2015). Collective Manipulation and Construction. In: Kacprzyk, J., Pedrycz, W. (eds) Springer Handbook of Computational Intelligence. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43505-2_72

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43505-2_72

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43504-5

  • Online ISBN: 978-3-662-43505-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics