Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

Reconfigurable robots are robots built from mechatronics modules that can be connected in different ways to create task-specific robot morphologies. In this chapter we introduce reconfigurable robots and provide a brief taxonomy of this type of robot. However, the main focus of this chapter is on the four most important challenges in realizing reconfigurable robots. The first two are mechatronics challenges, namely the challenge of connector design and energy. Connectors are the most important design element of any reconfigurable robot because they provide it with much of its functionality, but also many of its limitations. Supplying energy to a connected, distributed multi-robot system such as a reconfigurable robot is an important, but often underestimated problem. The third challenge is distributed control of reconfigurable robots. It is examined both how reconfigurable robots can be controlled in static configurations to produce locomotion and manipulation and how configurations can be transformed through a self-reconfiguration process. The fourth challenge that we will discuss is programability and debugging of reconfigurable robot systems. The chapter is concluded with a brief perspective. Overall, the chapter provides a general overview of the field of reconfigurable robots and is a perfect starting point for anyone interested in this exciting field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CEBOT:

cellular robot

LED:

light emitting diode

ROS:

robot operating system

References

  1. T. Fukuda, T. Ueyama: Cellular Robotics and Micro Robotics Systems (World Scientific, Singapore 1994)

    Google Scholar 

  2. R.H. Kessin: Cell motility: Making streams, Nature 422, 482 (2003)

    Article  Google Scholar 

  3. M. Yim, B. Shirmohammadi, J. Sastra, M. Park, M. Dugan, C.J. Taylor: Towards robotic self-reassembly after explosion, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (2007) pp. 2767–2772

    Google Scholar 

  4. E. Schweikardt et al.: Cubelets robot construction kit, https://modrobotics.com/ (2015)

  5. J.C. Larsen, D. Brandt, K. Stoy: LocoKit: A construction kit for building functional morphologies for robots, Proc. 12th Int. Conf. Adapt. Behav. (2012) pp. 12–24

    Google Scholar 

  6. T. Fukuda, Y. Kawauchi, M. Buss: Self organizing robots based on cell structures – CEBOT, Proc. IEEE/RSJ Int. Workshop Intell. Robot. Syst. (1988) pp. 145–150

    Chapter  Google Scholar 

  7. R. Groß, M. Bonani, F. Mondada, M. Dorigo: Autonomous self-assembly in swarm-bots, IEEE Trans. Robot. 22(6), 1115–1130 (2006)

    Article  Google Scholar 

  8. M.D.M. Kutzer, M.S. Moses, C.Y. Brown, D.H. Scheidt, G.S. Chirikjian, M. Armand: Design of a new independently-mobile reconfigurable modular robot, Proc. IEEE Int. Conf. Robot. Autom. (2010) pp. 2758–2764

    Google Scholar 

  9. G.G. Ryland, H.H. Cheng: Design of imobot, an intelligent reconfigurable mobile robot with novel locomotion, Proc. IEEE Int. Conf. Robot. Autom. (2010) pp. 60–65

    Google Scholar 

  10. M. Yim: A reconfigurable modular robot with many modes of locomotion, Proc. JSME Int. Conf. Adv. Mechatron. (1993) pp. 283–288

    Google Scholar 

  11. M. Yim: Locomotion with a Unit-Modular Reconfigurable Robot, Ph.D. Thesis (Department of Mechanical Engineering, Stanford University, Stanford 1994)

    Google Scholar 

  12. M. Yim, D.G. Duff, K. Roufas, Y. Zhang, C. Eldershaw: Evolution of PolyBot: A modular reconfigurable robot, Proc. Harmon. Drive Int. Symp. (2001)

    Google Scholar 

  13. A. Castano, R. Chokkalingam, P. Will: Autonomous and self-sufficient CONRO modules for reconfigurable robots, Proc. 5th Int. Symp. Distrib. Auton. Robot. Syst. (2000) pp. 155–164

    Google Scholar 

  14. B. Salemi, M. Moll, W.-M. Shen: SuperBot: A deployable, multi-functional, and modular self-reconfigurable robotic system, Proc. IEEE/RSJ Intl. Conf. Intell. Robot. Syst. (2006) pp. 3636–3641

    Google Scholar 

  15. S. Murata, H. Kurokawa, S. Kokaji: Self-assembling machine, Proc. IEEE Int. Conf. Robot. Autom. (1994) pp. 441–448

    Google Scholar 

  16. G.S. Chirikjian: Kinematics of a metamorphic robotic system, Proc. IEEE Int. Conf. Robot. Autom. (1994) pp. 449–455

    Google Scholar 

  17. K. Kotay, D. Rus, M. Vona, C. McGray: The self-reconfiguring robotic molecule, Proc. IEEE Int. Conf. Robot. Autom. (1998) pp. 424–431

    Google Scholar 

  18. S. Murata, H. Kurokawa, E. Yoshida, K. Tomita, S. Kokaji: A 3-d self-reconfigurable structure, Proc. IEEE Int. Conf. Robot. Autom. (1998) pp. 432–439

    Google Scholar 

  19. H. Kurokawa, K. Tomita, A. Kamimura, S. Kokaji, T. Hasuo, S. Murata: Distributed self-reconfiguration of M-TRAN III modular robotic system, Int. J. Robot. Res. 27(3/4), 373–386 (2008)

    Article  Google Scholar 

  20. E.H. Østergaard, K. Kassow, R. Beck, H.H. Lund: Design of the ATRON lattice-based self-reconfigurable robot, Auton. Robot. 21(2), 165–183 (2006)

    Article  Google Scholar 

  21. P. White, V. Zykov, J. Bongard, H. Lipson: Three dimensional stochastic reconfiguration of modular robots, Proc. Robot. Sci. Syst. (2005) pp. 161–168

    Google Scholar 

  22. J. Bishop, S. Burden, E. Klavins, R. Kreisberg, W. Malone, N. Napp, T. Nguyen: Self-organizing programmable parts, Proc. Int. Conf. Intell. Robot. Syst. (2005) pp. 3684–3691

    Google Scholar 

  23. P.J. White, M. Yim: Reliable external actuation for full reachability in robotic modular self-reconfiguration, Int. J. Robot. Res. 29(5), 598–612 (2010)

    Article  Google Scholar 

  24. K. Gilpin, A. Knaian, D. Rus: Robot pebbles: One centimeter modules for programmable matter through self-disassembly, Proc. IEEE Int. Conf. Robot. Autom. (2010) pp. 2485–2492

    Google Scholar 

  25. V. Zykov, A. Chan, H. Lipson: Molecubes: An open-source modular robotics kit, Proc. IEEE/RSJ Int. Conf. Robot. Syst., Self-Reconfig. Robot. Workshop (2007)

    Google Scholar 

  26. A. Lyder, R.F.M. Garcia, K. Stoy: Mechanical design of ODIN, an extendable heterogeneous deformable modular robots, Proc. IEEE/RSJ Int. Conf. Int. Robot. Syst., Nice (2008) pp. 883–888

    Google Scholar 

  27. A. Lyder, K. Stoy, R.F.M. Garciá, J.C. Larsen, P. Hermansen: On sub-modularization and morphological heterogeneity in modular robotics, Proc. 12th Int. Conf. Intell. Auton. Syst. (2012) pp. 1–14

    Google Scholar 

  28. Y. Terada, S. Murata: Automatic modular assembly system and its distribution control, Int. J. Robot. Res. 27, 445–462 (2008)

    Article  Google Scholar 

  29. W.-M. Shen, R. Kovac, M. Rubenstein: SINGO: A single-end-operative and genderless connector for self-reconfiguration, self-assembly and self-healing, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., Workshop Self-Reconfig. Robot., Syst. Appl. (2008) pp. 64–67

    Google Scholar 

  30. M.E. Karagozler, J.D. Campbell, G.K. Fedder, S.C. Goldstein, M.P. Weller, B.W. Yoon: Electrostatic latching for inter-module adhesion, power transfer, and communication in modular robots, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (2007) pp. 2779–2786

    Google Scholar 

  31. A. Ishiguro, M. Shimizu, T. Kawakatsu: Don't try to control everything! An emergent morphology control of a modular robot, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (2004) pp. 981–985

    Google Scholar 

  32. M.W. Jørgensen, E.H. Ostergaard, H.H. Lund: Modular ATRON: Modules for a self-reconfigurable robot, Proc. IEEE/RSJ Int. Conf. Robot. Syst. (2004) pp. 2068–2073

    Google Scholar 

  33. R.F.M. Garcia, A. Lyder, D.J. Christensen, K. Stoy: Reusable electronics and adaptable communication as implemented in the ODIN modular robot, Proc. IEEE Int. Conf. Robot. Autom. (2009)

    Google Scholar 

  34. B. Kirby, B. Aksak, J. Hoburg, T. Mowry, P. Pillai: A modular robotic system using magnetic force effectors, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (2007) pp. 2787–2793

    Google Scholar 

  35. J. Campbell, P. Pillai, S.C. Goldstein: The robot is the tether: Active, adaptive power routing for modular robots with unary inter-robot connectors, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (2005) pp. 4108–4115

    Google Scholar 

  36. S. Kernbach, O. Kernbach: Collective energy homeostasis in a large-scale micro-robotic swarm, Robot. Auton. Syst. 59, 1090–1101 (2011)

    Article  Google Scholar 

  37. M.P.O. Cabrera, R.S. Trifonov, G.A. Castells, K. Stoy: Wireless communication and power transfer in modular robots, Proc. IROS Workshop Reconfig. Modul. Robot. (2011)

    Google Scholar 

  38. D.J. Christensen, U.P. Schultz, D. Brandt, K. Stoy: Neighbor detection and crosstalk elimination in self-reconfigurable robots, Proc. 1st Int. Conf. Robot Commun. Coord. (2007)

    Google Scholar 

  39. R.F.M. Garcia, D.J. Christensen, K. Stoy, A. Lyder: Hybrid approach: A self-reconfigurable communication network for modular robots, Proc. 1st Int. Conf. Robot Commun. Coord. (2007) pp. 23:1–23:8

    Google Scholar 

  40. M. Yim: New locomotion gaits, Proc. Int. Conf. Robot. Autom. (1994) pp. 2508–2514

    Google Scholar 

  41. M. Yim, Y. Zhang, K. Roufas, D.G. Duff, C. Eldershaw: Connecting and disconnecting for chain self-reconfiguration with PolyBot, IEEE/ASME Trans. Mechatron. 7(4), 442 (2002)

    Article  Google Scholar 

  42. W.-M. Shen, B. Salemi, P. Will: Hormone-inspired adaptive communication and distributed control for conro self-reconfigurable robots, IEEE Trans. Robot. Autom. 18(5), 700–712 (2002)

    Article  Google Scholar 

  43. K. Støy, W.-M. Shen, P. Will: Using role based control to produce locomotion in chain-type self-reconfigurable robot, IEEE Trans. Mechatron. 7(4), 410–417 (2002)

    Article  Google Scholar 

  44. K. Støy, W.-M. Shen, P. Will: On the use of sensors in self-reconfigurable robots, Proc. 7th Int. Conf. Simul. Adapt. Behav. (2002) pp. 48–57

    Google Scholar 

  45. A. Kamimura, H. Kurokawa, E. Yoshida, S. Murata, K. Tomita, S. Kokaji: Automatic locomotion design and experiments for a modular robotic system, IEEE/ASME Trans. Mechatron. 10(3), 314–325 (2005)

    Article  Google Scholar 

  46. F. Hou, W.-M. Shen: On the complexity of optimal reconfiguration planning for modular reconfigurable robots, Proc. IEEE Int. Conf. Robot. Autom. (2010) pp. 2791–2796

    Google Scholar 

  47. H. Kurokawa et al. (2010): M-TRAN (Modular Transformer), Research, https://unit.aist.go.jp/is/frrg/dsysd/mtran3/research.htm

  48. Z. Butler, K. Kotay, D. Rus, K. Tomita: Generic de-centralized control for lattice-based self-reconfigurable robots, Int. J. Robot. Res. 23(9), 919–937 (2004)

    Article  Google Scholar 

  49. M. Yim, Y. Zhang, J. Lamping, E. Mao: Distributed control for 3-D metamorphosis, Auton. Robot. 10(1), 41–56 (2001)

    Article  MATH  Google Scholar 

  50. K. Støy, R. Nagpal: Self-reconfiguration using directed growth, Proc. Int. Conf. Distrib. Auton. Robot Syst. (2004) pp. 1–10

    Google Scholar 

  51. Z. Butler, R. Fitch, D. Rus: Experiments in distributed control of modular robots, Proc. Int. Symp. Exp. Robot. (2003) pp. 307–316

    Google Scholar 

  52. E.H. Østergaard, H.H. Lund: Distributed cluster walk for the ATRON self-reconfigurable robot, Proc. 8th Conf. Intell. Auton. Syst. (2004) pp. 291–298

    Google Scholar 

  53. K. Stoy, H. Kurokawa: Current topics in classic self-reconfigurable robot research, Proc. IROS/RSJ Workshop Reconfig. Modul. Robot. (2011)

    Google Scholar 

  54. J.J. Craig: Introduction to Robotics: Mechanics and Control, 3rd edn. (Prentice Hall, Reading 2003)

    Google Scholar 

  55. G.S. Chirikjian, J.W. Burdick: The kinematics of hyper-redundant robot locomotion, IEEE Trans. Robot. Autom. 11(6), 781–793 (1995)

    Article  Google Scholar 

  56. Y. Zhang, M. Fromherz, L. Crawford, Y. Shang: A general constraint-based control framework with examples in modular self-reconfigurable robots, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (2002) pp. 2163–2168

    Chapter  Google Scholar 

  57. S.K. Agrawal, L. Kissner, M. Yim: Joint solutions of many degrees-of-freedom systems using dextrous workspaces, Proc. IEEE Int. Conf. Robot. Autom. (2001) pp. 2480–2485

    Google Scholar 

  58. M. Bordignon, U.P. Schultz, K. Stoy: Model-based kinematics generation for modular mechatronic toolkits, Proc. 9th Int. Conf. Gener. Progr. Compon. Eng. (2010) pp. 157–166

    Google Scholar 

  59. M. Yim, D. Duff, Y. Zhang: Closed chain motion with large mechanical advantage, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (2001) pp. 318–323

    Google Scholar 

  60. D.J. Christensen, J. Campbell, K. Stoy: Anatomy-based organization of morphology and control in self-reconfigurable modular robots, Neural Comput. Appl. 19(6), 787–805 (2010)

    Article  Google Scholar 

  61. J. Campbell, P. Pillai: Collective actuation, Int. J. Robot. Res. 27(3/4), 299–314 (2007)

    Google Scholar 

  62. M. Yim, J. Reich, A. Berlin: Two approaches to distributed manipulation. In: Distributed Manipulation, ed. by H. Choset, K. Bohringer (Kluwer Academic, Boston 2000) pp. 237–260

    Chapter  Google Scholar 

  63. J. Kubica, A. Casal, T. Hogg: Agent-based control for object manipulation with modular self-reconfigurable robots, Proc. Int. Jt. Conf. Artif. Intell. (2001) pp. 1344–1352

    Google Scholar 

  64. D. Christensen, U.P. Schultz, D. Brandt, K. Stoy: A unified simulator for self-reconfigurable robots, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (2008) pp. 870–876

    Google Scholar 

  65. N. Jakobi, P. Husbands, I. Harvey: Noise and the reality gab: The use of simulation in evolutionary robotics, Adv. Artif. Life: Proc. Third Eur. Conf. Artif. Life (1995) pp. 704–720

    Chapter  Google Scholar 

  66. U.P. Schultz, M. Bordignon, K. Stoy: Robust and reversible execution of self-reconfiguration sequences, Robotica 29(1), 35–57 (2011)

    Article  Google Scholar 

  67. M.P. Ashley-Rollman, P. Lee, S.C. Goldstein, P. Pillai, J.D. Campbell: A language for large ensembles of independently executing nodes, Proc. Int. Conf. Log. Progr. (2009) pp. 265–280

    Google Scholar 

  68. B.P. Gerkey, R.T. Vaughan, K. Støy, A. Howard, G.S. Sukhatme, M.J. Mataric: Most valuable player: A robot device server for distributed control, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (2001) pp. 1226–1231

    Google Scholar 

  69. M. Quigley, K. Conley, B. Gerkey, J. Faust, T.B. Foote, J. Leibs, R. Wheeler, A.Y. Ng: ROS: An open-source robot operating system, Proc. ICRA Workshop Open Source Softw. (2009)

    Google Scholar 

  70. J. C. Larsen et al.: LocoKit: Robots that move, http://www.locokit.sdu.dk (2013)

  71. M. Yim, W.-M. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson, E. Klavins, G.S. Chirikjian: Modular self-reconfigurable robot systems, IEEE Robot. Autom. Mag. (2007) pp. 43–52

    Google Scholar 

  72. S. Murata, H. Kurokawa: Self-Organizing Robots (Springer, Berlin, Heidelberg 2012)

    Book  Google Scholar 

  73. K. Støy, D.J. Christensen, D. Brandt: Self-Reconfigurable Robots: An Introduction (MIT, Cambridge 2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kasper Støy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Støy, K. (2015). Reconfigurable Robots. In: Kacprzyk, J., Pedrycz, W. (eds) Springer Handbook of Computational Intelligence. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43505-2_73

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43505-2_73

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43504-5

  • Online ISBN: 978-3-662-43505-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics