Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

This chapter provides on overview on probabilistic modeling of swarming systems. We first show how population dynamics models can be derived from the master equation in physics. We then present models with increasing complexity and with varying degrees of spatial dynamics. We will first introduce a model for collaboration and show how macroscopic models can be used to derive optimal policies for the individual robot analytically. We then introduce two models for collective decisions; first modeling spatiality implicitly by tracking the number of robots at specific sites and then explicitly using a Fokker–Planck equation. The chapter is concluded with open challenges in combining non-spatial with spatial probabilistic modeling techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

PDE:

partial differential equation

SDE:

stochastic differential equation

References

  1. E. Bonabeau, M. Dorigo, G. Theraulaz: Swarm Intelligence: From Natural to Artificial Systems, SFI Studies in the Science of Complexity (Oxford Univ. Press, New York 1999)

    MATH  Google Scholar 

  2. S. Camazine, J.-L. Deneubourg, N.R. Franks, J. Sneyd, G. Theraulaz, E. Bonabeau: Self-Organization in Biological Systems, Princeton Studies in Complexity (Princeton Univ. Press, Princeton 2001)

    MATH  Google Scholar 

  3. N. Correll, A. Martinoli: Towards optimal control of self-organized robotic inspection systems, 8th Int. IFAC Symp. Robot Control (SYROCO), Bologna (2006)

    Google Scholar 

  4. H. Hamann: Space-Time Continuous Models of Swarm Robotics Systems: Supporting Global-to-Local Programming (Springer, Berlin, Heidelberg 2010)

    Book  Google Scholar 

  5. A. Prorok, N. Correll, A. Martinoli: Multi-level spatial modeling for stochastic distributed robotic systems, Int. J. Robot. Res. 30(5), 574–589 (2011)

    Article  Google Scholar 

  6. D. Milutinovic, P. Lima: Cells and Robots: Modeling and Control of Large-Size Agent Populations (Springer, Berlin, Heidelberg 2007)

    MATH  Google Scholar 

  7. A. Kettler, H. Wörn: A framework for Boltzmann-type models of robotic swarms, Proc. IEEE Swarm Intell. Symp. (SIS'11) (2011) pp. 131–138

    Google Scholar 

  8. A. Jadbabaie, J. Lin, A.S. Morse: Coordination of groups of mobile autonomous agents using nearest neighbor rules, IEEE Trans. Autom. Control 48(6), 988–1001 (2003)

    Article  MathSciNet  Google Scholar 

  9. R. Olfati-Saber, R. Murray: Consensus problems for networks of dynamic agents with switching topology and time-delays, IEEE Trans. Autom. Control 49, 1520–1533 (2004)

    Article  MathSciNet  Google Scholar 

  10. J. Cortés, S. Martínez, T. Karatas, F. Bullo: Coverage control for mobile sensing networks, IEEE Trans. Autom. Control 20(2), 243–255 (2004)

    Article  Google Scholar 

  11. N.G. van Kampen: Stochastic Processes in Physics and Chemistry (Elsevier, Amsterdam 1981)

    MATH  Google Scholar 

  12. H. Haken: Synergetics -- An Introduction (Springer, Berlin, Heidelberg 1977)

    Book  MATH  Google Scholar 

  13. F. Schweitzer: Brownian Agents and Active Particles. On the Emergence of Complex Behavior in the Natural and Social Sciences (Springer, Berlin, Heidelberg 2003)

    MATH  Google Scholar 

  14. A.J. Ijspeert, A. Martinoli, A. Billard, L. Gambardella: Collaboration through the exploitation of local interactions in autonomous collective robotics: The stick pulling experiment, Auton. Robot. 11, 149–171 (2001)

    Article  MATH  Google Scholar 

  15. N. Correll, A. Martinoli: Modeling and analysis of beaconless and beacon-based policies for a swarm-intelligent inspection system, Proc. 2005 IEEE Int. Conf. Robot. Autom. (ICRA 2005) (2005) pp. 2477–2482

    Google Scholar 

  16. A. Martinoli, K. Easton, W. Agassounon: Modeling of swarm robotic systems: A case study in collaborative distributed manipulation, Int. J. Robot. Res. 23(4), 415–436 (2004)

    Article  Google Scholar 

  17. K. Lerman, A. Galstyan, A. Martinoli, A.-J. Ijspeert: A macroscopic analytical model of collaboration in distributed robotic systems, Artif. Life 7(4), 375–393 (2001)

    Article  Google Scholar 

  18. L. Li, A. Martinoli, Y. Abu-Mostafa: Learning and Measuring Specialization in Collaborative Swarm Systems, Adapt. Behav. 12(3/4), 199–212 (2004)

    Article  Google Scholar 

  19. J.-L. Deneubourg, S. Aron, S. Goss, J.M. Pasteels: The self-organizing exploratory pattern of the argentine ant, J. Insect Behav. 3, 159–168 (1990)

    Article  Google Scholar 

  20. J. Halloy, J.-M. Amé, G.S.C. Detrain, G. Caprari, M. Asadpour, N. Correll, A. Martinoli, F. Mondada, R. Siegwart, J.-L. Deneubourg: Social integration of robots in groups of cockroaches to control self-organized choice, Science 318(5853), 1155–1158 (2009)

    Article  Google Scholar 

  21. S. Garnier, C. Jost, R. Jeanson, J. Gautrais, M. Asadpour, G. Caprari, J.-L. Deneubourg, G. Theraulaz: Collective decision-making by a group of cockroach-like robots, 2nd IEEE Swarm Intell. Symp. (SIS) (2005)

    Google Scholar 

  22. R. Jeanson, C. Rivault, J.-L. Deneubourg, S. Blanco, R. Fournier, C. Jost, G. Theraulaz: Self-organized aggregation in cockroaches, Anim. Behav. 69, 169–180 (2005)

    Article  Google Scholar 

  23. H. Hamann, H. Wörn: A framework of space-time continuous models for algorithm design in swarm robotics, Swarm Intell. 2(2–4), 209–239 (2008)

    Article  Google Scholar 

  24. H. Hamann, H. Wörn, K. Crailsheim, T. Schmickl: Spatial macroscopic models of a bio-inspired robotic swarm algorithm, IEEE/RSJ 2008 Int. Conf. Intell. Robot. Syst. (IROS'08), Los Alamitos (2008) pp. 1415–1420

    Chapter  Google Scholar 

  25. T. Schmickl, H. Hamann, H. Wörn, K. Crailsheim: Two different approaches to a macroscopic model of a bio-inspired robotic swarm, Robot. Auton. Syst. 57(9), 913–921 (2009)

    Article  Google Scholar 

  26. J.L. Doob: Stochastic Processes (Wiley, New York 1953)

    MATH  Google Scholar 

  27. T. Schmickl, R. Thenius, C. Möslinger, G. Radspieler, S. Kernbach, K. Crailsheim: Get in touch: Cooperative decision making based on robot-to-robot collisions, Auton. Agents Multi-Agent Syst. 18(1), 133–155 (2008)

    Article  Google Scholar 

  28. S. Kernbach, R. Thenius, O. Kornienko, T. Schmickl: Re-embodiment of honeybee aggregation behavior in an artificial micro-robotic swarm, Adapt. Behav. 17, 237–259 (2009)

    Article  Google Scholar 

  29. H. Hamann, H. Wörn: A space- and time-continuous model of self-organizing robot swarms for design support, 1st IEEE Int. Conf. Self-Adapt. Self-Organ. Syst. (SASO'07), Boston, Los Alamitos (2007) pp. 23–31

    Google Scholar 

  30. H. Hamann, H. Wörn: An analytical and spatial model of foraging in a swarm of robots, Lect. Notes Comput. Sci. 4433, 43–55 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaus Correll .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Correll, N., Hamann, H. (2015). Probabilistic Modeling of Swarming Systems. In: Kacprzyk, J., Pedrycz, W. (eds) Springer Handbook of Computational Intelligence. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43505-2_74

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43505-2_74

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43504-5

  • Online ISBN: 978-3-662-43505-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics