Abstract
This chapter addresses the tracking problem for the dynamic model of a unicycle mobile robot. A novel optimization method inspired from the chemical reactions is applied to solve this motion problem by integrating a kinematic and a torque controller based on fuzzy logic theory. Computer simulations are presented confirming that this optimization paradigm is able to outperform other optimization techniques applied to this particular robot
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Abbreviations
- ACO:
-
ant colony optimization
- CRA:
-
chemical reaction algorithm
- DNA:
-
deoxyribonucleic acid
- FLC:
-
fuzzy logic controller
- FOU:
-
footprint of uncertainty
- GA:
-
genetic algorithm
- MF:
-
membership function
- PSO:
-
particle swarm optimization
References
N.-Y. Shi, C.-P. Chu: A molecular solution to the hitting-set problem in DNA-based supercomputing, Inf. Sci. 180, 1010–1019 (2010)
L. Yamamoto: Evaluation of a catalytic search algorithm, Proc. 4th Int. Workshop Nat. Inspired Coop. Strateg. Optim., NICSO 2010 (2010) pp. 75–87
T. Meyer, L. Yamamoto, W. Banzhaf, C. Tschudin: Elongation control in an algorithmic chemistry, Lect. Notes Comput. Sci. 5777, 273–280 (2010)
J. Xu, A.Y.S. Lam, V.O.K. Li: Chemical reaction optimization for the grid scheduling problem, IEE Commun. Soc., ICC 2010 (2010) pp. 1–5
Y. Kanayama, Y. Kimura, F. Miyazaki, T. Noguchi: A stable tracking control method for a non-holonomic mobile robot, Proc. IEEE/RSJ Int. Workshop Intell. Robot. Syst., Osaka (1991) pp. 1236–1241
T.-C. Lee, C.H. Lee, C.-C. Teng: Tracking control of mobile robots using the backsteeping technique, Proc. 5th Int. Conf. Contr. Automat. Robot. Vis., Singapore (1998) pp. 1715–1719
T.-C. Lee, K. Tai: Tracking control of unicycle-modeled mobile robots using a saturation feedback controller, IEEE Trans. Control Syst. Techn. 9(2), 305–318 (2001)
S. Bentalba, A. El Hajjaji, A. Rachid: Fuzzy control of a mobile robot: A new approach, IEEE Int. Conf. Control Appl., Hartford (1997) pp. 69–72
S. Ishikawa: A method of indoor mobile robot navigation by fuzzy control, Proc. Int. Conf. Intell. Robot. Syst., Osaka (1991) pp. 1013–1018
T.H. Lee, F.H.F. Leung, P.K.S. Tam: Position control for wheeled mobile robot using a fuzzy controller, 25th Annu. Conf. IEEE, San Jose (1999) pp. 525–528
S. Pawlowski, P. Dutkiewicz, K. Kozlowski, W. Wroblewski: Fuzzy logic implementation in mobile robot control, 2nd Workshop Robot Motion Control (2001) pp. 65–70
C.-C. Tsai, H.-H. Lin, C.-C. Lin: Trajectory tracking control of a laser-guided wheeled mobile robot, Proc. IEEE Int. Conf. Control Appl., Taipei (2004) pp. 1055–1059
S.V. Ulyanov, S. Watanabe, V.S. Ulyanov, K. Yamafuji, L.V. Litvintseva, G.G. Rizzotto: Soft computing for the intelligent robust control of a robotic unicycle with a new physical measure for mechanical controllability, Soft Comput. 2, 73–88 (1998)
R. Fierro, F.L. Lewis: Control of a nonholonomic mobile robot using neural networks, IEEE Trans. Neural Netw. 9(4), 589–600 (1998)
K.T. Song, L.H. Sheen: Heuristic fuzzy-neural Network and its application to reactive navigation of a mobile robot, Fuzzy Sets Syst. 110(3), 331–340 (2000)
A.M. Bloch, S. Drakunov: Tracking in non-holonomic dynamic system via sliding modes, Proc. IEEE Conf. Decis. Control, Brighton (1991) pp. 1127–1132
D. Chwa: Sliding-mode tracking control of nonholonomic wheeled mobile robots in polar coordinates, IEEE Trans. Control Syst. Tech. 12(4), 633–644 (2004)
R. Fierro, F.L. Lewis: Control of a nonholonomic mobile robot: Backstepping kinematics into dynamics, Proc. 34th Conf. Decis. Control, New Orleans (1995) pp. 3805–3810
T. Fukao, H. Nakagawa, N. Adachi: Adaptive tracking control of a non-holonomic mobile robot, IEEE Trans. Robot. Autom. 16(5), 609–615 (2000)
A.R. Sahab, M.R. Moddabernia: Backstepping method for a single-link flexible-joint manipulator using genetic algorithm, IJICIC 7(7B), 4161–4170 (2011)
J. Yu, Y. Ma, B. Chen, H. Yu, S. Pan: Adaptive neural position tracking control for induction motors via backstepping, IJICIC 7(7B), 4503–4516 (2011)
L. Astudillo, O. Castillo, L. Aguilar: Intelligent control for a perturbed autonomous wheeled mobile robot: A type-2 fuzzy logic approach, Nonlinear Stud. 14(1), 37–48 (2007)
R. Martinez, O. Castillo, L. Aguilar: Optimization of type-2 fuzzy logic controllers for a perturbed autonomous wheeled mobile robot using genetic algorithms, Inf. Sci. 179(13), 2158–2174 (2009)
O. Castillo, R. Martinez-Marroquin, P. Melin, J. Soria: Comparative study of bio-inspired algorithms applied to the optimization of type-1 and type-2 fuzzy controllers for an autonomous mobile robot, Stud. Comput. Intell. 256, 247–262 (2009)
I. Kolmanovsky, N.H. McClamroch: Developments in nonholonomic nontrol problems, IEEE Control Syst. Mag. 15, 20–36 (1995)
G. Campion, G. Bastin, B. D'Andrea-Novel: Structural properties and classification of kinematic and dynamic models of wheeled mobile robots, IEEE Trans. Robot. Autom. 12(1), 47–62 (1996)
W. Nelson, I. Cox: Local path control for an autonomous vehicle, Proc. IEEE Conf. Robotics Autom. (1988) pp. 1504–1510
S. Oh, H. Jang, W. Pedrycz: A comparative experimental study of type-1/type-2 fuzzy cascade controller based on genetic algorithms and particle swarm optimization, Expert Syst. Appl. 38(9), 11217–11229 (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Melin, P., Castillo, O. (2015). Fuzzy Controllers for Autonomous Mobile Robots. In: Kacprzyk, J., Pedrycz, W. (eds) Springer Handbook of Computational Intelligence. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43505-2_80
Download citation
DOI: https://doi.org/10.1007/978-3-662-43505-2_80
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-43504-5
Online ISBN: 978-3-662-43505-2
eBook Packages: EngineeringEngineering (R0)