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Abstract. MapReduce is a powerful distributed data processing model
that is currently adopted in a wide range of domains to efficiently handle
large volumes of data, i.e., cope with the big data surge. In this paper, we
propose an approach to formal derivation of the MapReduce framework.
Our approach relies on stepwise refinement in Event-B and, in particu-
lar, the event refinement structure approach – a diagrammatic notation
facilitating formal development. Our approach allows us to derive the
system architecture in a systematic and well-structured way. The main
principle of MapReduce is to parallelise processing of data by first map-
ping them to multiple processing nodes and then merging the results.
To facilitate this, we formally define interdependencies between the map
and reduce stages of MapReduce. This formalisation allows us to pro-
pose an alternative architectural solution that weakens blocking between
the stages and, as a result, achieves a higher degree of parallelisation of
MapReduce computations.

Keywords: formal modelling, Event-B, refinement, event refinement
structure, MapReduce

1 Introduction

MapReduce is a widely used framework for handling large volumes of data [5].
It allows the users to automatically parallelise computations and execute them
on large clusters of computers. Essentially, the computation is performed in two
stages – map and reduce. The first stage maps the input data to multiple process-
ing nodes, while the second stage performs parallel computations to merge the
obtained results. Typically, execution of the map stage is blocking, i.e., execu-
tion of the reduce stage does not start until the map stage is completed. Though
MapReduce is already a highly performant framework, to keep pace with the
drastically increasing volume of data, it would be desirable to loosen the cou-
pling between the stages and hence exploit the potential for parallelisation to
the fullest.

In this paper, we undertake a formal study of the MapReduce framework. We
formally model the control flow and data interdependencies between the map and



reduce tasks, as well as derive the conditions under which the execution of the
reduce stage can overlap with the execution of the map stage. Our formalisation
of the (generic) MapReduce framework relies on the Event-B method and the
associated Rodin platform. Event-B [1] is a formal approach that is particularly
suitable for the development of distributed systems. The system development in
Event-B starts from an abstract specification that is transformed into a detailed
specification in a number of correctness-preserving refinement steps. In this pa-
per, the Event Refinement Structure approach [3, 6] is used to facilitate the
refinement process. The technique provides us with an explicit graphical repre-
sentation of the relationships between the events at different levels of abstraction
and helps to gradually derive the complex MapReduce architecture.

Event-B relies on proof-based verification that is integrated into the devel-
opment process. The Rodin platform [10] automates development in Event-B by
generating the required proof obligations and automatically discharging a part
of them. Via abstraction, proof and decomposition, Event-B enables reasoning
about system-level properties of complex distributed systems. In particular, it
allows us to explicitly define interdependencies between the processed data and
derive the conditions under which an execution of the reduce stage can start
before completion of the map stage. We believe that the proposed approach
provides the designers with a formally grounded insight on the properties of
MapReduce and enables fine-tuning of the framework to achieve a higher degree
of parallelisation.

The rest of the paper is organised as follows. In Section 2 we describe the
generic MapReduce framework and our formalisation of it. In Section 3 we give an
overview of the Event-B formalism and the Event Refinement Structure (ERS)
approach. In Section 4 we present our formal derivation of the MapReduce frame-
work in Event-B using the ERS approach. As a result, we derive two alternative
architectures of the MapReduce framework – blocking and partially blocking. In
Section 5 we overview the related work and present some concluding remarks.

2 MapReduce

2.1 Overview of MapReduce
MapReduce is a programming model for processing large data sets. It has been
originally proposed by Google [5]. The framework is designed to orchestrate the
work on distributed nodes, run various computational tasks in parallel, providing
at the same time for redundancy and fault tolerance. Distributed and parallelised
computations are the key mechanisms that make the MapReduce framework very
attractive to use in a wide range of application areas: data mining, bioinformat-
ics, business intelligence, etc. Nowadays it is becoming increasingly popular in
cloud computing. There exist different implementations of MapReduce, among
them open-source Hadoop [2], Hive [11], and others.

The MapReduce computational model was inspired by the map and reduce
functions widely used in functional programming. A MapReduce computation
is composed of two main steps: the map stage and the reduce stage. During
the map stage, the system inputs are divided into smaller computational tasks,



which are then performed in parallel (provided there are enough processors in the
cluster). The obtained collective results then become the inputs for the reduce
stage, which combines them in some way to produce the overall output. Once
again, the reduce inputs are split into smaller computational tasks that can be
executed in parallel.

The MapReduce framework can be tuned to perform different data transfor-
mations by the user-supplied map and reduce functions. These functions encode
basic mapping and reduction tasks to be performed in single nodes. The MapRe-
duce framework then incorporates the provided functions and orchestrates the
overall distributed computations based on them.

A typical example illustrating MapReduce computations is counting the word
occurrences in a large set of documents. The input data set is split into smaller
portions and the user-provided map function is applied to each such data block.
The map function simply assigns to each word it encounters the value equal to
1. Overall, the map stage produces a collection of (word,1) pairs as intermediate
results. Then, during the reduce stage, the user-supplied reduce function takes
a portion of these intermediate data related to a particular word and sums all
the occurrences of that word. Such a computation is done for each encountered
word. The overall result is a set of (word,number) pairs.

2.2 Towards Formal Reasoning about MapReduce

In this section, we present a formalisation of the MapReduce framework. Specif-
ically, we mathematically represent all MapReduce execution stages, i.e., the re-
quired data and control flow, and identify the computational (map and reduce)
tasks that can be executed in parallel. Moreover, we formally define possible
data interdependencies between the map and reduce tasks. The latter allows us
to propose an alternative architectural solution, which weakens blocking between
the MapReduce phases and, as a result, achieves a higher degree of parallelisa-
tion of MapReduce computations. In Section 4, we will propose two alternative
formal developments of the MapReduce framework in Event-B, both of which
rely on the formalisation presented below.

Let IData be an abstract type defining the input data to be processed within
the MapReduce framework and OData be an abstract type defining the result-
ing output data. In a nutshell, a MapReduce computation processes the given
input data and generates some result. Thus, it can be formally represented as a
function:

MapReduce ∈ IData → OData.

More specifically, a MapReduce computation can be defined as a functional
composition of the following phases: MSplit, Map, RSplit, Reduce, and Combine:

MapReduce = MSplit; Map; RSplit; Reduce; Combine.

Let us note that the phases MSplit and Map together correspond to the map
stage mentioned in Section 2.1, while the phases RSplit and Reduce belong to
the reduce stage.

The MapReduce process starts with the MSplit phase. During this phase,
the input data are split into a number of blocks (portions of the input data),



which can be handled independently of each other. In the following Map phase,
the user-provided map function is applied to each such input block. Next, in the
RSplit phase, the MapReduce framework groups together all the intermediate
results obtained after the Map phase to prepare for the reduce computations.
Similarly to the MSplit phase, the data are divided into blocks that can be
handled separately. After that, the Reduce phase is executed, during which the
user-supplied reduce function is repeatedly applied (once per each block). Fi-
nally, in the Combine phase, all the obtained results are combined into the final
output.

Formalisation of the MapReduce execution phases. Next we define all the
MapReduce execution phases in more detail. In the MSplit phase, the input data
are split into a number of blocks that are later supplied to the map function. To
emphasise the independent nature of map computations, we associate the notion
of a map task with such a portion of the input data to be processed separately.

Let MTask be a set of all possible map tasks and MData be an abstract type
defining the data obtained after the splitting. Then the MSplit phase can be
mathematically represented as follows:

MSplit ∈ IData→ (MTask 7→MData).

Essentially, MSplit produces a partitioning of the input data to be used in the
Map phase among different map tasks. Note that the result of MSplit is a partial
function since only a subset of MTask may be needed for particular input data.

We assume that the input data fully determines the number and the subset of
involved map tasks.4 To extract this information, we use the following functions

mtasks ∈ IData→ P1(MTask), mnum ∈ IData→ N1
defined as

∀idata ∈ IData · mtasks(idata) = dom(MSplit(idata)),

∀idata ∈ IData · mnum(idata) = card(MSplit(idata)),

where dom and card are the function domain and set cardinality operators.
The Map phase involves transformation of all the data obtained by the MSplit

phase into the intermediate form to be used in the later phases. Let RData be
an abstract type defining the intermediate data obtained after the Map phase.
Then Map phase can be mathematically represented as the following function:

Map ∈ (MTask 7→MData)→ P1(MTask ×RData).

Therefore, Map takes the map data partitioning produced by MSplit and returns
the transformed data associated with the map tasks that produced them. These
results then become the input data for the following reduce computations.

In our formalisation the Map results consist of a set of (mtask, rdata) pairs,
without assuming any further structure among them. This is done intentionally,
since grouping and partitioning of these data will be performed in the RSplit
phase.
4 This applies only to the involved computational tasks. Actual software components

that will be employed to carry out the necessary computations can be dynamically
assigned and re-assigned for a specific map or reduce task.



All the involved map tasks should be performed within the Map phase. For-
mally, this requirement can be formulated as follows:

∀f ∈MTask 7→MData · f 6= ∅ ⇒ dom(f) = dom(Map(f)).

Next the results obtained by the Map phase are grouped together to prepare
for reduce computations. Similarly to the MSplit phase, they should be first
partitioned among the individual reduce tasks.

Let RTask be a set of all possible reduce tasks. Then the RSplit phase can
be formally defined as the following function:

RSplit ∈ P1(MTask ×RData)→ (RTask 7→ P1(RData)).

Essentially, the function takes the intermediate results produced by the Map
phase and produces data partitioning among the involved reduce tasks.

We can reason about the actual number and the subset of the involved reduce
tasks. Once again, this is determined by the original input data. Formally, we
introduce the functions

rtasks ∈ IData→ P1(RTask), rnum ∈ IData→ N1

defined as
∀idata ∈ IData · rtasks(idata) = dom(RSplit(Map(MSplit(idata)))),

∀idata ∈ IData · rnum(idata) = card(RSplit(Map(MSplit(idata)))).

The RSplit phase only rearranges the intermediate data, producing their par-
titioning among the reduce tasks. Therefore, neither new data should appear nor
any of the existing data can disappear during this transformation. Mathemati-
cally, this can be formulated as the following property:

∀f ∈ P1(MTask × RData) · ran(f) = (
[

rt ∈ dom(RSplit(f)) | RSplit(f)(rt)),

where ran is the function range operator.
The Reduce phase is similar to the Map phase – it takes as input a data

partitioning produced by RSplit and returns transformed data:

Reduce ∈ (RTask 7→ P1(RData))→ P1(OData),

where OData is an abstract type defining the resulting output data.
Finally, the last Combine phase can be simply defined as follows:

Combine ∈ P1(OData)→ OData.

Formalisation of the map and reduce functions. The Map phase is based
on repeated invocations of the user-supplied function map. The map function can
be formally represented in the following way:

map ∈ MData→ P1(RData).

Thus, it takes an input data from MData and produces some intermediate data
to be used in reduce computations. The map function and the Map phase are
tightly linked. To be precise, the union of all the results obtained from all the
map function applications should be equal to the overall result of the Map phase:

Map = {f ·f ∈MTask 7→MData | f 7→ (
[

mt·mt ∈ dom(f) | {mt}×map(f(mt)))}.



The user-supplied reduce function can be specified as follows:
reduce ∈ P1(RData)→ P1(OData).

It takes as an input a subset of the reduce data RData and produces some subset
of output data from OData.

Finally, the overall result of the Reduce phase should be equal to the com-
bined results obtained by repeated application of the reduce function:

Reduce = {f ·f ∈ RTask 7→P1(RData) | f 7→ (
[

rt·rt ∈ dom(f) | reduce(f(rt)))}.

Essentially, the Reduce definition is directly based on the user-supplied reduce
function.
Formalisation of interdependencies between the map and reduce tasks.
The main principle of MapReduce is that all the map and reduce computations
are distributed to multiple independent processing nodes. The reduce inputs
are based on the previously produced map outputs. However, in some cases,
the reduce inputs might depend on only particular map outputs. Therefore, the
reduce stage can be initiated before all the map computations are finished. To
relax the limitation of the original MapReduce computation flow, requiring that
the reduce stage starts only after completing the map stage, we formally define
the dependence relation between the map and reduce tasks as the following
function dep:

dep ∈ IData→ P(RTask×MTask),
with the following property:
∀ idata ∈ IData, rt ∈ RTask, mt ∈ MTask · rt 7→ mt ∈ dep(idata) ⇔

mt ∈ dom(MSplit(idata)) ∧
(∃rd ∈ RData · rt ∈ dom(RSplit(Map(MSplit(idata)))) ∧

rd ∈ RSplit(Map(MSplit(idata)))(rt) ∧ mt 7→ rd ∈ Map(MSplit(idata))).

The property states that for any input data input, a map task mt and a
reduce task rt are in dependence relation (i.e., a reduce task depends on a map
task), if and only if some intermediate data rd has been generated for this
reduce task rt by the computations of the map task mt during the Map phase.
Essentially, the relation dep defines the data interdependencies between the map
and reduce stages. This formalisation allows us to propose (in Section 4) an
alternative architectural solution that weakens blocking between the stages.

Finally, to make it possible for a particular reduce task to start immediately
after all the necessary data have been produced by the map tasks related by
dep, we need a version of RSplit, defining a partial split related with a specific
reduce task. For a given reduce task, it produces the grouped together results
obtained within the Map phase:

rsplit ∈ RTask 7→ (P1(MTask× RData)→ P1(RData)).

Again, the union of the results obtained from all the rsplit function applica-
tions should be the result of the RSplit phase:

∀f ·f ∈ P1(MTask ×RData)⇒

RSplit(f) = (
[

rt·rt ∈ dom(rsplit)|{rt 7→ rsplit(rt)(f)}).



In Section 4 we will demonstrate that, by relying on the proposed formalisa-
tion, we can derive a formal model of the MapReduce framework. There we will
propose two models of MapReduce – blocking and partially blocking models.

3 Formal Development by Refinement: Background

3.1 Event-B

Event-B is a state-based formal approach that promotes the correct-by-construction
development paradigm and formal verification by theorem proving [1]. In Event-
B, a system model is specified using the notion of an abstract state machine.
An abstract state machine encapsulates the model state, represented as a col-
lection of variables, and defines operations on the state, i.e., it describes the
dynamic behaviour of a modelled system. The variables are strongly typed by
the constraining predicates that, together with other important system proper-
ties, are defined as model invariants. Usually, a machine has an accompanying
component, called a context, which includes user-defined sets, constants and their
properties given as a list of model axioms.

The dynamic behaviour of the system is defined by a collection of atomic
events. Generally, an event has the following form:

e =̂ any a where Ge then Re end,

where e is the event’s name, a is the list of local variables, and (the event guard)
Ge is a predicate over the model state. The body of an event is defined by
a multiple (possibly nondeterministic) assignment to the system variables. In
Event-B, this assignment is semantically defined as the next-state relation Re.
The event guard defines the conditions under which the event is enabled, i.e.,
its body can be executed. If several events are enabled at the same time, any of
them can be chosen for execution nondeterministically.

Event-B employs a top-down refinement-based approach to system develop-
ment. A development starts from an abstract specification that nondeterministi-
cally models the most essential functional requirements. In a sequence of refine-
ment steps, we gradually reduce nondeterminism and introduce detailed design
decisions. The consistency of Event-B models, i.e., verification of model well-
formedness, invariant preservation as well as correctness of refinement steps, is
demonstrated by discharging the relevant proof obligations. The Rodin platform
[10] provides an automated support for modelling and verification. In particu-
lar, it automatically generates the required proof obligations and attempts to
discharge them.

3.2 Event Refinement Structure

The Event Refinement Structure (ERS) [3, 6] approach augments Event-B re-
finement with a graphical notation that allows us to explicitly represent the
relationships between the events at different abstraction levels as well as define
the required event sequence in a model. ERS is illustrated by example in Fig-
ure 1. The diagram explicitly shows that AbstractEvent is refined by Event2,



machine M1 refines M0  
 
variables Event1 Event2 
invariants 
  @inv1 Event1 � BOOL 
  @inv2 Event2 = TRUE � Event1 = TRUE 
  @inv3 Event2 = AbstractEvent 
 
event INITIALISATION then 
      @act1 Event1 � FALSE 
      @act2 Event2 � FALSE 
end 
 
event Event1 any par  where 
      @grd1 Event1 = FALSE 
     then 
      @act1 Event1 � TRUE 
end 
 
event Event2 refines AbstractEvent  
    any par where 
      @grd1 Event1= TRUE 
      @grd2 Event2 = FALSE 
    then 
      @act1 Event2 � TRUE 
end 

AbstractEvent,

Event1, Event2,

Machine M0  
 
variables AbstractEvent 
invariants 
  @inv1 AbstractEvent � BOOL 
 
event INITIALISATION then 
      @act1 AbstractEvent � FALSE 
end 
 
event AbstractEvent any par  where 
      @grd1 AbstractEvent = FALSE  
     then 
      @act1 AbstractEvent � TRUE  
end 

Root,%abstract%event,%is%decomposed%into%sub%events%%%%

The%sub%events%are%read%from%le7%to%right%and%indicate%sequen:al%control%%

A%dashed%line:%refines%skip%
A%solid%line:%refines%AbstractEvent%%%%

Fig. 1. Event Refinement Structure (ERS) Diagram

while Event1 is a new event that refines skip. Moreover, the diagram shows that
the effect achieved by AbstractEvent in the abstract machine is realised in the
refining machine by the occurrence of Event1 followed by Event2.

In ERS, the sequential execution of the leaf events is depicted from left
to right. The event sequencing is managed by additional control variables intro-
duced into the underlying Event-B model. For instance, for each leaf event (node)
represented in Fig. 1, there is one boolean control variable with the same name
as the event. When the event Event1 occurs, the corresponding control variable
is set to TRUE. The following event, Event2, can occur only after Event1. This
is achieved by checking the value of the Event1 control variable in the guard of
Event2.

Boolean variables only allow controlling single execution of events. When
multiple executions of an event are needed, the event is parameterised and set
control variables are used instead of boolean ones. This allows the event to
occur many times with different values of its parameter. A parameter can be
introduced in an event by the ERS constructors. The ERS constructors used
in this paper are illustrated by two simple examples in Fig. 2. The use of all
constructor indicates that Event1 is executed for all instances of the p parameter
before execution of Event2, while the use of the constructor some indicates that
Event1 is executed for some of instances of the p parameter before execution of
Event2. The corresponding control variables for Event1 and Event2 are defined
as sets in the model.



AbstractEvent	
  

Event1(p)	
  

AbstractEvent	
  

Event2	
  Event2	
  Event1(p)	
  

some(p)	
  all(p)	
  

Fig. 2. ERS all /some Constructors

Event-B adopts an event-based modelling style that facilitates the correct-
by-construction development of complex distributed systems. Since MapReduce
is a framework designed for large-scale distributed computations, Event-B is a
natural choice for its formal modelling and verification.

4 Formal Development with Event Refinement Structure

In this section, we rely on our formalisation presented in Section 2.2 to de-
velop two alternative Event-B models of the MapReduce framework: blocking
and partially blocking. The presented formal developments make use of the Event
Refinement Structure (ERS) approach, presented in Section 3.2. Our develop-
ment strategy is based on gradually unfolding all the MapReduce computational
phases by refinement. Such small model transformation steps allow us to effi-
ciently handle the complexity of the MapReduce framework.

Let us note that our development of the MapReduce framework is generic.
It relies on the use of abstract functions to represent essential data transforma-
tions of MapReduce. These abstract functions can be treated as generic system
parameters that can be later instantiated with their concrete instances for the
specific MapReduce implementations.

4.1 Blocking Model of MapReduce

The mathematical data structures and their properties from our MapReduce
formalisation constitute the basis for defining the Event-B context component
that is used throughout the whole formal development. Essentially, the whole
presented formalisation is incorporated as the context, e.g.

axm8: MSplit ∈ IData→ (MTask 7→MData)

axm9: Map ∈ (MTask 7→MData)→ P1(MTask ×RData)

axm10: RSplit ∈ P1(MTask ×RData)→ (RTask 7→ P1(RData)), ...

We will constantly rely on these definitions to ensure the correctness of the
overall data transformation process within our MapReduce models. Since the
formalised definitions are still abstract (generic), our presented development es-
sentially formally describes a family of possible MapReduce implementations.
Due to space limit, we do not present the complete development but rather give
its graphical representation using the ERS graphical notation. The full Event-B
models of this development can be found in [8].

Abstract model of MapReduce. We start with an abstract model in which
the whole MapReduce computation is done in one atomic step. This behaviour
is modelled by the event OutputMapReduce:



OutputMapReduce b=
any t1, t2, t3, t4
when t1 = MSplit(idata) ∧ t2 = Map(t1) ∧ t3 = RSplit(t2) ∧ t4 = Reduce(t3)
then output := Combine(t4) end

With help of the ERS approach, we decompose the atomicity of
OutputMapReduce into smaller steps. Verification of the refinement proof obli-
gations ensures that the decomposition preserves correctness. Specifically, in
the next several consecutive refinement steps, we break the atomicity of the
OutputMapReduce event by introducing explicit events for the following MapRe-
duce phases: MSplit, Map, RSplit, and Reduce. Fig. 3 presents the ERS diagram
of the model.

m0


m1


m2


m3


m4


OutputMapReduce
MapSplit


MapPhase


ReduceSplit


OutputMapReduce


ReducePhase
 OutputMapReduce


OutputMapReduce


OutputMapReduce	
  

Fig. 3. Blocking model: ERS diagram (for OutputMapReduce)

The new model events MapSplit, MapPhase, ReduceSplit and ReducePhase
specify the sequential execution of the MapReduce phases. The sequence between
the events is enforced by following the rules given in Section 3.2. It is also
specified by the invariant properties on the control variables:

OutputMapReduce = TRUE ⇒ ReducePhase = TRUE,

ReducePhase = TRUE ⇒ ReduceSplit = TRUE,

ReduceSplit = TRUE ⇒ MapPhase = TRUE,

MapPhase = TRUE ⇒ MapSplit = TRUE.

Moreover, to store the intermediate results of separate phases, we introduce
a number of variables (msplit, map result, rsplit and reduce result) that are
updated during execution of the corresponding events. The variable updates are
also performed according to the formalisation given in Section 2.2. For instance,
the variable msplit is introduced to store the result of the MSplit phase. After
the execution of the MapSplit event, msplit gets the value equal to MSplit(idata).

Machine MapReduce1 m1 refines MapReduce1 m0
Variables idata, output, msplit, MapSplit, ...
Invariants OutputMapReduce = TRUE⇒MapSplit = TRUE ∧

MapSplit = TRUE⇒msplit = MSplit(idata) ∧ ...
MapSplit b=

when MapSplit = FALSE
then MapSplit := TRUE

msplit := MSplit(idata)
end

OutputMapReduce refines OutputMapReduce b=
any t2, t3, t4
where MapSplit = TRUE ∧OutputMapReduce = FALSE ∧

t2 = Map(t1) ∧ t3 = RSplit(t2) ∧ t4 = Reduce(t3)
with t1 = msplit
then output := Combine(t4)

OutputMapReduce:= TRUE
end



m5


m4
 MapPhase


MTProcess(mt)
 MapCommit


all  (mt)


Fig. 4. Blocking model: ERS diagram (for MapPhase)

Breaking atomicity of the Map phase. In the second refinement step, we
introduce the event MapPhase that abstractly models the Map phase. Essentially,
the Map phase involves parallel execution of all the map tasks. To introduce such
a behaviour, we use the constructor “all constructor”, which is applied to the
MTProcess event that models the execution of a particular map task (see Fig.4).
The expression “all(mt)” means that the MTProcess event can be enabled for
multiple values of mt ∈ dom(msplit). On the other hand, the MapCommit event
can only occur when all the map computations of map tasks have been finished.
In Event-B, we model this by adding a variable MTProcess, which is a set
containing all possible map tasks that should be processed. The order between
the events is ensured by the invariants on the control variables, e.g.,

inv4: MapCommit = TRUE⇒MTProcess = dom(msplit),

where dom(msplit) defines the set of all current map tasks. The invariant states
that if the MapCommit event has been executed, then all the map tasks have
been completed before it. While specifying the MTProcess event, we rely on the
definition of the map function, given in Section 2.2.

Machine MapReduce1 m5 refines MapReduce1 m4
MTProcess b=

any mt
where MapSplit = TRUE ∧mt ∈ dom(msplit) ∧mt /∈MTProcess
then MTProcess := MTProcess ∪ {mt}

MTProcess result(mt) := map(msplit(mt))
end

MapCommit refines MapPhase b=
when MapSplit = TRUE ∧MapCommit = FALSE ∧MTProcess=dom(msplit)
then MapCommit = TRUE

map result := (
S

mt·mt ∈ dom(msplit)|{mt} ×MTProcess result(mt))
end

Further refinements of the Map phase. During the MapReduce execution,
all the map and reduce tasks are parallelised and distributed to multiple process-
ing nodes – the actual software components that carry out the computations.
We name these components as map and reduce workers. Moreover, there is a
special component – master – that controls all the computations and assigns
the map and reduce tasks to the workers. The master periodically pings every
worker. In case of a worker failure, the master re-assigns tasks from the failed
worker to a healthy one. This procedure can be repeated until the master gets
the result for a particular map or reduce task from some worker. To introduce
such functionality, we carry out several further refinements focusing on the Map
phase. These refinements elaborate on modelling of map task execution.

Fig.5 illustrates the event MTProcess and its several consecutive levels of
atomicity decomposition. First, the abstract event MTProcess is broken into two
concrete events, MTok and MTSuccess correspondingly. The MTok event models
the execution of the map task mt by a particular map worker mw. The result



m6


m7


m5
 MTProcess(mt)


MTok(mt,  mw)


some  (mw)


MTSuccess(mt)


AssignMT(mt,  mw)
 ExecMT(mt,  mw)


Fig. 5. Blocking model: ERS diagram (for MTProcess)

of this computation should be approved by the master side, which is modelled
by execution of the MTSuccess event. The “some” constructor indicates that
the event MTok may be executed only for some instances of the mw param-
eter before the MTSuccess event becomes enabled. The MTSuccess and MTok
control variables are defined as sets, which allows for multiple executions of the
MTSuccess and MTok events. Later on, in the next refinement step, the atomicity
of the MTok event is broken into two events AssignMT and ExecMT. The event
AssignMT models an assignment of a map task mt to a particular map worker
mw, while ExecMT models the successful execution of the task by this worker.

Similarly to the Map phase, we refine the Reduce phase by gradually unfold-
ing its computations. The overall refinement structure is presented on Fig.6.

Let us note that the proposed architecture is blocking in the sense that the
reduce computations can be only started after all the map computations have
been finished. The formal derivation of the blocking model and its dynamics is
performed under this condition. Next we propose an alternative architectural
solution of the MapReduce framework that weakens blocking between the map
and reduce stages and, as a result, achieves a higher degree of parallelisation
of the MapReduce computations. For this purpose, we will make use of the
dependence relation between map and reduce tasks introduced in the Section
2.2. We call this model partially blocking model.
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Fig. 6. MapReduce ERS Diagram: blocking model
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Fig. 7. Partially blocking model: ERS diagrams

4.2 Partially Blocking Model of MapReduce

We start from the same initial specification as for the blocking model, in which
the whole MapReduce computation is done in one atomic step, and then refine
it in order to introduce the MSplit phase. Next, in contrast to the previous
derivation, we separate the phase that combines executions of the RSplit and
Reduce phases – RSplitReducePhase. Fig.7 (a) presents the ERS diagram of the
refined model.

RSplitReducePhase involves executions of the RSplit and Reduce phases for
all reduce tasks. Essentially, these computations are parallelised. To introduce
such behaviour, we use the“all” constructor applied to the RTSplitReduceProcess
event that, for a particular reduce task rt, performs split and then reduce com-
putations (see. Fig.7 (b)). Next, we separate these split and reduce executions
of the particular reduce task rt. Namely, the event RTSplitReduceProcess is split
into two concrete events, RTSplitProcess and RTProcess. Here we again rely on
the rsplit and reduce functions formalised in Section 2.2.

Up to now we did not introduce the Map phase explicitly. However, the
results of MapPhase are simulated internally, by storing the intermediate results
in the local variables of the RTSplitProcess event. To explicitly model the Map
phase, the event RTSplitProcess is now split into two events MTProcess and
RSplit (see Fig.8). The constructor “all” is parameterised by (mt ∈ dep[{rt}])”.
It means that the event MTProcess is executed for all those map tasks, mt, that
are in data dependency with the reduce task rt. Therefore, to start the RSplit
phase, we do not need to wait until all the map tasks are completed. Here we
are relying on the definition of data interdependency dep between the map and
reduce stages, formalised in Section 2.2. Finally, the MTProcess and RTProcess
events are refined in the same manner as in the blocking model presented in the
Section 4.1.
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Let us note that the proposed partially blocking model allows us to achieve a
higher degree of parallelisation of MapReduce computations. Indeed, for a par-
ticular reduce task, when the dependent map tasks have already been executed,
the RSplit phase for this reduce task can be performed, and then reduce com-
putations can be started. In other words, the computations from three different
phases – Map, RSplit, and Reduce – can be performed in parallel, provided the
involved data are independent. Therefore, the proposed architectural solution
weakens blocking between the stages and, as a result, achieves a higher degree of
parallelisation. The overall refinement structure of the partially blocking model
is presented on Fig.9.

4.3 Discussion and Future Work

To verify correctness of the presented models, we have discharged around 270
proof obligations for the first formal development, as well as more than 300 for
the second one. Approximately 93% of them have been proved automatically
by the Rodin platform and the rest have been proved manually in the Rodin
interactive proving environment. With help of the ERS approach, we have de-
composed the atomicity of the MapReduce framework and hereby achieved a
higher degree of automation in proving. Moreover, the ERS diagrammatic nota-
tion has provided us with additional support to represent the model control flow
at different abstraction levels and also simplified reasoning about possible refine-
ment strategies. The whole development and proving effort has taken about one
person-month.

As a result of the presented refinement chains, we have arrived at two dif-
ferent centralised Event-B models of the distributed MapReduce framework. As
a part of the future work, we are planing to derive distributed models by em-
ploying the existing decomposition mechanisms of Event-B. This would result in
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Fig. 9. MapReduce Event Refinement Structure: partially blocking model



creating separate formal specifications of the involved software components of
the MapReduce framework (such as master, map worker, reduce worker, etc.).

The static part of the modelled system is formally defined in the correspond-
ing context component. The definitions of static data structures in the context
are mostly very abstract, i.e. they state only essential properties to be satis-
fied. This makes them generic parameters of the whole formal development.
In its turn, such formal development becomes generic, representing a family of
the systems that can be described by providing suitable concrete values for the
generic parameters. The proposed formal model can be used then as a starting
point for future development of a specific MapReduce application. The actual
concrete values can be supplied by either the end-user (e.g., the map and reduce
functions) or the developer of the MapReduce framework (e.g., the MSplit or
RSplit transformations).

As a continuation of this work, it would be interesting to create formal models
for a concrete MapReduce implementation, e.g., the word counting example,
by using the Event-B generic instantiation plug-in. Moreover, to analyse the
quantitative characteristics of the proposed models, we are planing to use the
Uppaal-SMC model checker. This would allow us to, e.g., assign different data
processing rates for the map and reduce tasks and then compare the execution
time estimations of two considered architectures.

5 Related Work and Conclusions

The problem of formalisation of the MapReduce framework has been studied in
[12]. The authors present a formal model of MapReduce using the CSP method.
In their work, they focus on formalising the essential components of the MapRe-
duce framework: the master, mapper, reducer, the underlying file system, and
their interactions. In contrast, our focus is on modelling the overall flow of con-
trol as well as the data interdependencies between the MapReduce computational
phases. Moreover, our approach is based on the stepwise refinement technique
that allowed us to gradually unfold the complexity of the MapReduce framework.

Formalisation of MapReduce in Haskel is presented in [9]. Similarly to our
approach, it focuses on the program skeleton that underlies MapReduce compu-
tations and considers the opportunities for parallelism in executing MapReduce
computations. However, in addition to that, we also reason about the involved
software components – the master, map and reduce workers – that are associated
with the respective map and reduce tasks.

The work [7] presents two approaches based on Coq and JML to formally
verify the actual running code of the selected Hadoop MapReduce application.
In our work we are more interested in formalisation of MapReduce computa-
tions and gradual building of different MapReduce models that are correct-by-
construction. The performance issues of MapReduce computations have been
studied in the paper [4], focusing on one particular implementation of the MapRe-
duce – Hadoop. In contrast, we have tried to formally investigate the data in-
terdependencies between the MapReduce phases and their effect on the degree
of parallelisation, independently of a concrete MapReduce implementation.



In this paper we have proposed an approach to formalising the MapReduce
framework. Our main technical contribution of this paper is two-fold. On the one
hand, based on our definition of interdependencies between the processed data as
well as the map and reduce stages, we have derived the conditions under which
blocking between the stages can be relaxed. Therefore, we have rigorously derived
constraints for implementing MapReduce with a higher degree of parallelisation.
On the other hand, we have demonstrated how to use the Event Refinement
Structure (ERS) technique to formally derive and verify a model of a complex
system with a massively parallel architecture and complex dynamic behaviour.

The stepwise refinement approach to deriving a complex system model has
demonstrated good scalability and allowed us to express system properties at
different levels of abstraction and with a different degree of granularity. Moreover,
combining the refinement technique with tool-assisted mathematical proofs have
provided us with a scalable approach to verification of a complex system model.
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