Skip to main content

The Development of Quantum-Dot Cellular Automata

  • Chapter
  • First Online:
Field-Coupled Nanocomputing

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8280))

Abstract

Quantum-dot cellular automata (QCA) is a paradigm for connecting nanoscale bistable devices to accomplish general-purpose computation. The idea has its origins in the technology of quantum dots, Coulomb blockade, and Landauer’s observations on digital devices and energy dissipation. We examine the early development of this paradigm and its various implementations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wharam, D., Thornton, T., Newbury, R., Pepper, M., Ahmed, H., Frost, J., Hasko, D., Peacock, D., Ritchie, D., Jones, G.: One-dimensional transport and the quantisation of the ballistic resistance. J. Phys. C: Solid State Phys. 21, L209 (1988)

    Article  Google Scholar 

  2. Van Wees, B., Van Houten, H., Beenakker, C., Williamson, J.G., Kouwenhoven, L., Van der Marel, D., Foxon, C.: Quantized conductance of point contacts in a two-dimensional electron gas. Phys. Rev. Lett. 60, 848 (1988)

    Article  Google Scholar 

  3. Kastner, M.: The single electron transistor and artificial atoms. Ann. Phys. (Leipzig) 9, 885–894 (2000)

    Article  Google Scholar 

  4. Meurer, B., Heitmann, D., Ploog, K.: Single-electron charging of quantum-dot atoms. Phys. Rev. Lett. 68, 1371 (1992)

    Article  Google Scholar 

  5. Goodnick, S.M., Bird, J.: Quantum-effect and single-electron devices. IEEE Trans. Nanotechnology 2, 368–385 (2003)

    Article  Google Scholar 

  6. Landauer, R.: Nanostructure physics: fashion or depth. In: Reed, M.A., Kirk, W.P. (eds.) Nanostructure Physics and Fabrication, pp. 17–30. Academic Press, New York (1989)

    Google Scholar 

  7. Fulton, T.A., Dolan, G.H.: Observation of single-electron charging effects in small tunnel junctions. Phys. Rev. Lett. 59, 109–112 (1987)

    Article  Google Scholar 

  8. Averin, D., Likharev, K.: Coulomb blockade of single-electron tunneling, and coherent oscillations in small tunnel junctions. J. Low Temp. Phys. 62, 345–373 (1986)

    Article  Google Scholar 

  9. Lent, C.S.: A simple model of Coulomb effects in semiconductor nanostructures. In: Kirk, W.P., Reed, M.A. (eds.) Nanostructures and Mesoscopic Systems, p. 183. Academic Press, San Diego (1992)

    Chapter  Google Scholar 

  10. Toffoli, T., Margolus, N.: Cellular Automata Machines: A New Environment for Modelling. MIT Press, Cambridge (1987)

    Google Scholar 

  11. Lent, C.S., Tougaw, P.D., Porod, W.: A bistable quantum cell for cellular automata. In: International Workshop Computational Electronics, pp. 163–166 (1992)

    Google Scholar 

  12. Lent, C.S., Tougaw, P.D.: Lines of interacting quantum-dot cells: a binary wire. J. Appl. Phys. 74, 6227–6233 (1993)

    Article  Google Scholar 

  13. Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4, 49 (1993)

    Article  Google Scholar 

  14. Tougaw, P.D., Lent, C.S.: Logical devices implemented using quantum cellular automata. J. Appl. Phys. 75, 1818–1825 (1994)

    Article  Google Scholar 

  15. Lent, C.S., Tougaw, P.D.: Bistable saturation due to single electron charging in rings of tunnel junctions. J. Appl. Phys. 75, 4077–4080 (1994)

    Article  Google Scholar 

  16. Tougaw, P.D., Lent, C.S.: Dynamic behavior of quantum cellular automata. J. Appl. Phys. 80, 4722–4736 (1996)

    Article  Google Scholar 

  17. Landauer, R.: Is quantum mechanics useful? Philos. Trans. R. Soc. Lond. Ser. A: Phys. Eng. Sci. 353, 367–376 (1995)

    Article  MathSciNet  Google Scholar 

  18. Lent, C.S., Tougaw, P.D., Porod, W.: In: Proceedings of the Workshop on the Physics and Computation, PhysComp’94, pp. 5–13. IEEE (1994)

    Google Scholar 

  19. Lent, C.S., Tougaw, P.D.: A device architecture for computing with quantum dots. Proc. IEEE 85, 541–557 (1997)

    Article  Google Scholar 

  20. Korotkov, A.N., Likharev, K.K.: Single-electron-parametron-based logic devices. J. Appl. Phys. 84, 6114–6126 (1998)

    Article  Google Scholar 

  21. Tóth, G., Lent, C.S.: Quasiadiabatic switching for metal-island quantum-dot cellular automata. J. Appl. Phys. 85, 2977–2984 (1999)

    Article  Google Scholar 

  22. Keyes, R.W., Landauer, R.: Minimal energy dissipation in logic. IBM J. Res. Dev. 14, 152–157 (1970)

    Article  Google Scholar 

  23. Gardelis, S., Smith, C., Cooper, J., Ritchie, D., Linfield, E., Jin, Y.: Evidence for transfer of polarization in a quantum dot cellular automata cell consisting of semiconductor quantum dots. Phys. Rev. B 67, 033302 (2003)

    Article  Google Scholar 

  24. Perez-Martinez, F., Farrer, I., Anderson, D., Jones, G., Ritchie, D., Chorley, S., Smith, C.: Demonstration of a quantum cellular automata cell in a GaAs/AlGaAs heterostructure. Appl. Phys. Lett. 91, 032102–032103 (2007)

    Article  Google Scholar 

  25. Smith, C., Gardelis, S., Rushforth, A., Crook, R., Cooper, J., Ritchie, D., Linfield, E., Jin, Y., Pepper, M.: Realization of quantum-dot cellular automata using semiconductor quantum dots. Superlattices Microstruct. 34, 195–203 (2003)

    Article  Google Scholar 

  26. Macucci, M., Gattobigio, M., Bonci, L., Iannaccone, G., Prins, F., Single, C., Wetekam, G., Kern, D.: A QCA cell in silicon-on-insulator technology: theory and experiment. Superlattices Microstruct. 34, 205–211 (2003)

    Article  Google Scholar 

  27. Single, C., Augke, R., Prins, F., Wharam, D., Kern, D.: Towards quantum cellular automata operation in silicon: transport properties of silicon multiple dot structures. Superlattices Microstruct. 28, 429–434 (2000)

    Article  Google Scholar 

  28. Single, C., Augke, R., Prins, F., Wharam, D., Kern, D.: Single-electron charging in doped silicon double dots. Semicond. Sci. Technol. 14, 1165 (1999)

    Article  Google Scholar 

  29. Single, C., Prins, F., Kern, D.: Simultaneous operation of two adjacent double dots in silicon. Appl. Phys. Lett. 78, 1421–1423 (2001)

    Article  Google Scholar 

  30. Mitic, M., Cassidy, M., Petersson, K., Starrett, R., Gauja, E., Brenner, R., Clark, R., Dzurak, A., Yang, C., Jamieson, D.: Demonstration of a silicon-based quantum cellular automata cell. Appl. Phys. Lett. 89, 013503-013503-013503 (2006)

    Article  Google Scholar 

  31. Dzurak, A.S., Simmons, M.Y., Hamilton, A.R., Clark, R.G., Brenner, R., Buehler, T.M., Curson, N.J., Gauja, E., McKinnon, R.P., Macks, L.D.: Construction of a silicon-based solid state quantum computer. Quantum Inf. Comput. 1, 82–95 (2001)

    Google Scholar 

  32. Davies, J.H., Nixon, J.A.: Fluctuations in submicrometer semiconducting devices caused by the random positions of dopants. Phys. Rev. B 39, 3423 (1989)

    Article  Google Scholar 

  33. Lafarge, P., Pothier, H., Williams, E.R., Esteve, D., Urbina, C., Devoret, M.H.: Direct observation of macroscopic charge quantization. Z. Phys. B 85, 327–332 (1991)

    Article  Google Scholar 

  34. Pothier, H., Lafarge, P., Orfila, P.F., Urbina, C., Esteve, D., Devoret, M.H.: Single electron pump fabricated with ultrasmall normal tunnel junctions. Phys. B 169, 573 (1991)

    Article  Google Scholar 

  35. Zimmerman, N.M., Huber, W.H., Simonds, B., Hourdakis, E., Fujiwara, A., Ono, Y., Takahashi, Y., Inokawa, H., Furlan, M., Keller, M.W.: Why the long-term charge offset drift in Si single-electron tunneling transistors is much smaller (better) than in metal-based ones: two-level fluctuator stability. J. Appl. Phys. 104, 033710 (2008)

    Article  Google Scholar 

  36. Orlov, A.O., Amlani, I., Bernstein, G.H., Lent, C.S., Snider, G.L.: Realization of a functional cell for quantum-dot cellular automata. Science 277, 928–930 (1997)

    Article  Google Scholar 

  37. Aassime, A., Gunnarsson, D., Bladh, K., Delsing, P., Schoelkopf, R.: Radio-frequency single-electron transistor: toward the shot-noise limit. Appl. Phys. Lett. 79, 4031–4033 (2001)

    Article  Google Scholar 

  38. Amlani, I., Orlov, A.O., Snider, G.L., Bernstein, G.H.: Differential charge detection for quantum-dot cellular automata. J. Vac. Sci. Technol. B 15, 2832–2835 (1997)

    Article  Google Scholar 

  39. Amlani, I., Orlov, A.O., Snider, G.L., Lent, C.S., Bernstein, G.H.: Demonstration of a six-dot quantum cellular automata system. Appl. Phys. Lett. 72, 2179–2181 (1998)

    Article  Google Scholar 

  40. Bernstein, G.H., Bazan, G., Chen, M., Lent, C.S., Merz, J.L., Orlov, A.O., Porod, W., Snider, G.L., Tougaw, P.D.: Practical issues in the realization of quantum-dot cellular automata. Superlattices Microstruct. 20, 447–459 (1996)

    Article  Google Scholar 

  41. Snider, G.L., Orlov, A.O., Amlani, I., Zuo, X., Bernstein, G.H., Lent, C.S., Merz, J.L., Porod, W.: Quantum-dot cellular automata: review and recent experiments (invited). J. Appl. Phys. 85, 4283–4285 (1999)

    Article  Google Scholar 

  42. Amlani, I., Orlov, A.O., Toth, G., Bernstein, G.H., Lent, C.S., Snider, G.L.: Digital logic gate using quantum-dot cellular automata. Science 284, 289–291 (1999)

    Article  Google Scholar 

  43. Toth, G., Orlov, A.O., Amlani, I., Lent, C.S., Bernstein, G.H., Snider, G.L.: ARTICLES-semiconductors II: surfaces, interfaces, microstructures, and related topics-Conductance suppression due to correlated electron transport in coupled double quantum dots. Phys. Rev.-Section B-Condens. Matter 60, 16906–16912 (1999)

    Google Scholar 

  44. Orlov, A.O., Amlani, I., Kummamuru, R.K., Ramasubramaniam, R., Toth, G., Lent, C.S., Bernstein, G.H., Snider, G.L.: Experimental demonstration of clocked single-electron switching in quantum-dot cellular automata. Appl. Phys. Lett. 77, 295–297 (2000)

    Article  Google Scholar 

  45. Kummamuru, R.K., Liu, M., Orlov, A.O., Lent, C.S., Bernstein, G.H., Snider, G.L.: Temperature dependence of the locked mode in a single-electron latch. Microelectron. J. 36, 304–307 (2005)

    Article  Google Scholar 

  46. Orlov, A.O., Kummamuru, R.K., Ramasubramaniam, R., Toth, G., Lent, C.S., Bernstein, G.H., Snider, G.L.: Experimental demonstration of a latch in clocked quantum-dot cellular automata. Appl. Phys. Lett. 78, 1625–2627 (2001)

    Article  Google Scholar 

  47. Kummamuru, R.K., Timler, J., Toth, G., Lent, C.S., Ramasubramaniam, R., Orlov, A.O., Bernstein, G.H., Snider, G.L.: Power gain in a quantum-dot cellular automata latch. Appl. Phys. Lett. 81, 1332–1334 (2002)

    Article  Google Scholar 

  48. Kummamuru, R.K., Orlov, A.O., Ramasubramaniam, R., Lent, C.S., Bernstein, G.H., Snider, G.L.: Operation of a quantum-dot cellular automata (QCA) shift register and analysis of errors. IEEE Trans. Electron Devices 50, 1906–1913 (2003)

    Article  Google Scholar 

  49. Orlov, A.O., Kummamuru, R., Lent, C.S., Bernstein, G.H., Snider, G.L.: Clocked quantum-dot cellular automata shift register. Surf. Sci. 532–535, 1193–1198 (2003)

    Article  Google Scholar 

  50. Orlov, A.O., Kummamuru, R., Ramasubramaniam, R., Lent, C.S., Bernstein, G.H., Snider, G.L.: A two-stage shift register for clocked quantum-dot cellular automata. J. Nanosci. Nanotechnol. 2, 351–355 (2002)

    Article  Google Scholar 

  51. Yadavalli, K.K., Orlov, A.O., Timler, J.P., Lent, C.S., Snider, G.L.: Fanout gate in quantum-dot cellular automata. Nanotechnology 18, 1–4 (2007)

    Article  Google Scholar 

  52. Demadis, K.D., Hartshorn, C.M., Meyer, T.J.: The localized-to-delocalized transition in mixed-valence chemistry. Chem. Rev. 101, 2655–2686 (2001)

    Article  Google Scholar 

  53. Blair, E., Lent, C.S.: In: Third IEEE Conference on Nanotechnology, 2003. IEEE-NANO 2003, vol. 1, pp. 402–405. IEEE (2003)

    Google Scholar 

  54. Blair, E.P., Lent, C.S.: In: International Conference on Simulation of Semiconductor Processes and Devices, 2003. SISPAD 2003, pp. 14–18. IEEE (2003)

    Google Scholar 

  55. Hennessy, K., Lent, C.S.: Clocking of molecular quantum-dot cellular automata. J. Vacuum Sci. Technol. B: Microelectron. Nanometer Struct. 19, 1752–1755 (2001)

    Article  Google Scholar 

  56. Isaksen, B., Lent, C.S.: In: Third IEEE Conference on Nanotechnology, 2003. IEEE-NANO 2003, vol. 1, pp. 5–8. IEEE (2003)

    Google Scholar 

  57. Lent, C.S.: In: APS Meeting Abstracts, vol. 1, pp. 14002 (2000)

    Google Scholar 

  58. Lent, C.S., Isaksen, B.: Clocked molecular quantum-dot cellular automata. IEEE Trans. Electron Devices 50, 1890–1896 (2003)

    Article  Google Scholar 

  59. Lent, C.S., Isaksen, B., Lieberman, M.: Molecular quantum-dot cellular automata. J. Am. Chem. Soc. 125, 1056–1063 (2003)

    Article  Google Scholar 

  60. Lieberman, M., Chellamma, S., Varughese, B., Wang, Y., Lent, C.S., Bernstein, G.H., Snider, G.L., Peiris, F.C.: Quantum-dot cellular automata at a molecular scale. Ann. N. Y. Acad. Sci. 960, 225–239 (2002)

    Article  Google Scholar 

  61. Lieberman, M., Chellamma, S., Wang, Y., Hang, Q., Bernstein, G., Lent, C.S.: In: Abstracts of Papers of the American Chemical Society. (Amer Chemical Soc 1155 16th ST, NW, Washington, DC 20036 USA, 2002), vol. 224, p. U474 (2002)

    Google Scholar 

  62. Joyce, R.A., Qi, H., Fehlner, T.P., Lent, C.S., Orlov, A.O., Snider, G.L.: In: Nanotechnology Materials and Devices Conference, 2009. NMDC’09, pp. 46–49. IEEE (2009)

    Google Scholar 

  63. Qi, H., Gupta, A., Fehlner, T.P., Snider, G.L., Lent, C.S.: In: Abstracts of Papers of the American Chemical Society. (Amer Chemical Soc 1155 16TH ST, NW, WASHINGTON, DC 20036 USA, 2006), vol. 232 (2006)

    Google Scholar 

  64. Qi, H., Gupta, A., Noll, B.C., Snider, G.L., Lu, Y., Lent, C.S., Fehlner, T.P.: Dependence of field switched ordered arrays of dinuclear mixed-valence complexes on the distance between the redox centers and the size of the counterions. J. Am. Chem. Soc. 127, 15218–15227 (2005)

    Article  Google Scholar 

  65. Qi, H., Li, Z., Snider, G.L., Lent, C.S., Fehlner, T.: Field driven electron switching in a silicon surface bound array of vertically oriented two-dot molecular quantum cellular automata (2003)

    Google Scholar 

  66. Qi, H., Sharma, S., Li, Z., Snider, G.L., Orlov, A.O., Lent, C.S., Fehlner, T.P.: Molecular quantum cellular automata cells. Electric field driven switching of a silicon surface bound array of vertically oriented two-dot molecular quantum cellular automata. J. Am. Chem. Soc. 125, 15250–15259 (2003)

    Article  Google Scholar 

  67. Lu, Y., Quardokus, R., Lent, C.S., Justaud, F., Lapinte, C., Kandel, S.A.: Charge localization in isolated mixed-valence complexes: an STM and theoretical study. J. Am. Chem. Soc. 132, 13519–13524 (2010)

    Article  Google Scholar 

  68. Quardokus, R.C., Lu, Y., Wasio, N.A., Lent, C.S., Justaud, F., Lapinte, C., Kandel, S.A.: Through-bond versus through-space coupling in mixed-valence molecules: observation of electron localization at the single-molecule scale. J. Am. Chem. Soc. 134, 1710–1714 (2012)

    Article  Google Scholar 

  69. Wasio, N.A., Quardokus, R.C., Forrest, R.P., Corcelli, S.A., Lu, Y., Lent, C.S., Justaud, F., Lapinte, C., Kandel, S.A.: STM imaging of three-metal-center molecules: comparison of experiment and theory for two mixed-valence oxidation states. J. Phys. Chem. C 116, 25486–25492 (2012)

    Article  Google Scholar 

  70. Quardokus, R.C., Wasio, N.A., Forrest, R.P., Lent, C.S., Corcelli, S.A., Christie, J.A., Henderson, K.W., Kandel, S.A.: Adsorption of diferrocenylacetylene on Au (111) studied by scanning tunneling microscopy. Phys. Chem. Chem. Phys. 15, 6973–6981 (2013)

    Article  Google Scholar 

  71. Haider, M.B., Pitters, J.L., DiLabio, G.A., Livadaru, L., Mutus, J.Y., Wolkow, R.A.: Controlled coupling and occupation of silicon atomic quantum dots at room temperature. Phys. Rev. Lett. 102, 046805 (2009)

    Article  Google Scholar 

  72. Cowburn, R., Welland, M.: Room temperature magnetic quantum cellular automata. Science 287, 1466–1468 (2000)

    Article  Google Scholar 

  73. Imre, A., Csaba, G., Ji, L., Orlov, A., Bernstein, G., Porod, W.: Majority logic gate for magnetic quantum-dot cellular automata. Science 311, 205–208 (2006)

    Article  Google Scholar 

  74. Lambson, B., Carlton, D., Bokor, J.: Exploring the thermodynamic limits of computation in integrated systems: magnetic memory, nanomagnetic logic, and the Landauer limit. Phys. Rev. Lett. 107, 010604 (2011)

    Article  Google Scholar 

  75. Bandyopadhyay, S., Das, B., Miller, A.: Supercomputing with spin-polarized single electrons in a quantum coupled architecture. Nanotechnology 5, 113 (1994)

    Article  Google Scholar 

  76. Tougaw, P.D., Lent, C.S., Porod, W.: Bistable saturation in coupled quantum-dot cells. J. Appl. Phys. 74, 3558–3566 (1993)

    Article  Google Scholar 

  77. Hänninen, I., Lu, H., Lent, C.S., Snider, G.L.: Energy recovery and logical reversibility in adiabatic CMOS multiplier. In: Dueck, G.W., Miller, D. (eds.) RC 2013. LNCS, vol. 7948, pp. 25–35. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  78. Blair, E.P., Liu, M., Lent, C.S.: Signal energy in quantum-dot cellular automata bit packets. J. Comput. Theor. Nanosci. 8, 972–982 (2011)

    Article  Google Scholar 

  79. Blair, E.P., Lent, C.S.: Environmental decoherence stabilizes quantum-dot cellular automata. J. Appl. Phys. 113, 124302-124302-124316 (2013)

    Article  Google Scholar 

  80. Fijany, A., Toomarian, N., Spotnizt, M.: Implementing permutation matrices by use of quantum dots. NASA Technical Briefs 25 (2001)

    Google Scholar 

  81. Tougaw, D., Khatun, M.: A scalable signal distribution network for quantum-dot cellular automata. IEEE Trans. Nanotech. 12, 215–224 (2013)

    Article  Google Scholar 

  82. Walus, K., Dysart, T.J., Jullien, G.A., Budiman, R.A.: QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3, 26–31 (2004)

    Article  Google Scholar 

  83. Dysart, T.J., Kogge, P.M., Lent, C.S., Liu, M.: An analysis of missing cell defects in quantum-dot cellular automata. In: IEEE International Workshop on Design and Test of Defect-Tolerant Nanoscale Architectures (NANOARCH) (2005)

    Google Scholar 

  84. Frost, S.E., Rodrigues, A.F., Giefer, C.A., Kogge, P.M.: In: IEEE Computer Society Annual Symposium on VLSI 2003. Proceedings, pp. 19–25. IEEE (2003)

    Google Scholar 

  85. Frost, S.E., Rodrigues, A.F., Janiszewski, A.W., Rausch, R.T., Kogge, P.M.: In: First Workshop on Non-Silicon, Computing, vol. 2 (2002)

    Google Scholar 

  86. Niemier, M.T., Kogge, P.M.: In: The 6th IEEE International Conference on Electronics, Circuits and Systems, 1999. Proceedings of ICECS’99, vol. 3, pp. 1211–1215. IEEE (1999)

    Google Scholar 

  87. Niemier, M.T., Kogge, P.M.: Exploring and exploiting wire-level pipelining in emerging technologies. ACM SIGARCH Comput. Archit. News 29, 166–177 (2001)

    Article  Google Scholar 

  88. Niemier, M.T., Kogge, P.M.: In: Proceedings of the Third Petaflops Workshop, with Frontiers of Massively Parallel Processing (1999)

    Google Scholar 

  89. Tougaw, D., Johnson, E.W., Egley, D.: Programmable logic implemented using quantum-dot cellular automata. IEEE Trans. Nanotechnol. 11, 739–745 (2012)

    Article  Google Scholar 

  90. Niemier, M.T., Rodrigues, A.F., Kogge, P.M.: In: 1st Workshop on Non-silicon Computation, pp. 38–45 (2002)

    Google Scholar 

  91. Lukeman, P.S., Mittal, A.C., Seeman, N.C.: Two dimensional PNA/DNA arrays: estimating the helicity of unusual nucleic acid polymers. Chem. Commun. 2004, 1694–1695 (2004)

    Article  Google Scholar 

  92. Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998)

    Article  Google Scholar 

  93. Rothemund, P.W.: Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006)

    Article  Google Scholar 

  94. Gu, H., Chao, J., Xiao, S.-J., Seeman, N.C.: Dynamic patterning programmed by DNA tiles captured on a DNA origami substrate. Nat. Nanotechnol. 4, 245–248 (2009)

    Article  Google Scholar 

  95. Kim, K.N., Sarveswaran, K., Mark, L., Lieberman, M.: DNA origami as self-assembling circuit boards. In: Calude, C.S., Hagiya, M., Morita, K., Rozenberg, G., Timmis, J. (eds.) Unconventional Computation. LNCS, vol. 6079, pp. 56–68. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  96. Sarveswaran, K., Huber, P., Lieberman, M., Russo, C., Lent, C.S.: In: Third IEEE Conference on Nanotechnology, 2003. IEEE-NANO 2003, vol. 1, pp. 417–420. IEEE (2003)

    Google Scholar 

  97. Sarveswaran, K., Russo, C., Robinson, A., Huber, P., Lent, C.S., Lieberman, M.: In: Abstracts of Papers of the American Chemical Society. (Amer Chemical Soc 1155 16TH ST, NW, Washington, DC 20036 USA, 2002), vol. 224, p. U421 (2002)

    Google Scholar 

  98. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532 (1973)

    Article  MATH  Google Scholar 

  99. Leff, H., Rex, A.F.: Maxwell’s Demon 2 Entropy, Classical and Quantum Information, Computing, vol. 2. CRC Press, Boca Raton (2010)

    Google Scholar 

  100. Timler, J., Lent, C.S.: Maxwell’s demon and quantum-dot cellular automata. J. Appl. Phys. 94, 1050–1060 (2003)

    Article  Google Scholar 

  101. Cavin, R.K., Zhirnov, V.V., Hutchby, J.A., Bourianoff, G.I.: Energy barriers, demons, and minimum energy operation of electronic devices. Fluctuation Noise Lett. 5, C29–C38 (2005)

    Article  Google Scholar 

  102. Zhirnov, V.V., Cavin III, R.K., Hutchby, J.A., Bourianoff, G.I.: Limits to binary logic switch scaling - a Gedanken model. Proc. IEEE 91, 1934–1939 (2003)

    Article  Google Scholar 

  103. Earman, J., Norton, J.D.: Exorcist XIV: the wrath of Maxwell’s demon. Part II. From Szilard to Landauer and beyond. Stud. History Phil. Sci. Part B: Stud. History Phil. Mod. Phys. 30, 1–40 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  104. Norton, J.D.: Waiting for Landauer. Stud. History Phil. Sci. Part B: Stud. History Phil. Mod. Phys. 42, 184–198 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  105. Lent, C.S., Liu, M., Lu, Y.: Bennett clocking of quantum-dot cellular automata and the limits to binary logic scaling. Nanotechnology 17, 4240 (2006)

    Article  Google Scholar 

  106. Orlov, A.O., Lent, C.S., Thorpe, C.C., Boechler, G.P., Snider, G.L.: Experimental test of Landauer’s principle at the sub-kBT level. Jpn. J. Appl. Phys. 51, 06FE10 (2012)

    Article  Google Scholar 

  107. Snider, G.L., Blair, E.P., Thorpe, C.C., Appleton, B.T., Boechler, G.P., Orlov, A.O., Lent, C.S.: In: 12th IEEE Conference on Nanotechnology (IEEE-NANO), 2012, pp. 1–6. IEEE (2012)

    Google Scholar 

  108. Boechler, G.P., Whitney, J.M., Lent, C.S., Orlov, A.O., Snider, G.L.: Fundamental limits of energy dissipation in charge-based computing. Appl. Phys. Lett. 97, 103502–103503 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig S. Lent .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lent, C.S., Snider, G.L. (2014). The Development of Quantum-Dot Cellular Automata. In: Anderson, N., Bhanja, S. (eds) Field-Coupled Nanocomputing. Lecture Notes in Computer Science(), vol 8280. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43722-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43722-3_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43721-6

  • Online ISBN: 978-3-662-43722-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics