Skip to main content

Reversible and Adiabatic Computing: Energy-Efficiency Maximized

  • Chapter
  • First Online:
Field-Coupled Nanocomputing

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8280))

Abstract

Emerging devices promise energy-efficient computing on a massively parallel scale, but due to the extremely high integration density the previously insignificant dissipation due to information erasure (destruction) becomes a prominent circuit design factor. The amount of heat generated by erasure depends on the degree of logical reversibility of the circuits and successful adiabatic charging. In this paper, we design an adiabatic arithmetic-logic unit to prototype the locally-connected Bennett-clocked circuit design approach. The results indicate one or two orders-of-magnitude energy savings in this physical circuit implementations vs. standard static CMOS. Previous work on computer arithmetic suggests that common hardware implementations erase much more information than would be required by a theoretical minimal mapping of the addition operation. A Bennett-clocked approach can reach the theoretical minimum number of bit erasures in the binary addition, though simulations show that a transistor technology has energy loss due to parasitic components that can exceed the information loss heat. In this paper, we describe the relationship between adiabatic and logically reversible circuits, and predict the potential of the arithmetic implementations based on quantum-dot cellular automata, which enable the full benefits of reversible, locally connected circuits to be realized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. International Technology Roadmap for Semiconductors. ITRS report [Online] (2012). http://www.itrs.net/Links/2012ITRS/Home2012.htm

  2. Lent, C., Tougaw, P.: A device architecture for computing with quantum dots. Proc. IEEE 85(4), 541–557 (1997)

    Article  Google Scholar 

  3. Timler, J., Lent, C.: Maxwell’s demon and quantum-dot cellular automata. J. Appl. Phys. 94, 1050–1060 (2003)

    Article  Google Scholar 

  4. Hänninen, I., Takala, J.: Binary adders on quantum-dot cellular automata. J. Sig. Proc. Syst. 58(1), 87–103 (2010)

    Article  Google Scholar 

  5. Hänninen, I., Takala, J.: Binary multipliers on quantum-dot cellular automata. Facta Universitatis 20(3), 541–560 (2007)

    Article  Google Scholar 

  6. Hänninen, I., Takala, J.: Irreversible bit erasures in binary adders. In: Proceedings of the 10th IEEE Conference on Nanotechnology, Seoul, Republic of Korea, 17–20 August 2010, pp. 223–226 (2010)

    Google Scholar 

  7. Hänninen, I., Takala, J., Lent, C.: Irreversible bit erasures in binary multipliers. In: Proceedings of the 2011 IEEE International Symposium on Circuits and Systems, Rio de Janeiro, Brazil, 15–18 May 2011, pp. 2369–2372 (2011)

    Google Scholar 

  8. Hänninen, I., Takala, J.: Irreversibility induced density limits and logical reversibility in nanocircuits. In: Proceedings of IEEE/ACM International Symposium on Nanoscale Architectures, Amsterdam, The Netherlands, 4–6 July 2012

    Google Scholar 

  9. Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183–191 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  10. Berut, A., Arakelyan, A., Petrosyan, A., Ciliberto, S., Dillenschneider, R., Lutz, E.: Experimental verification of Landauer’s principle linking information and thermodynamics. Nature 483, 187–189 (2012). http://dx.doi.org/10.1038/nature10872

    Article  Google Scholar 

  11. Valiev, K.A., Starosel’skii, V.I.: A model and properties of a thermodynamically reversible logic gate. Russian Microelectron. 29(2), 83–98 (2000)

    Article  Google Scholar 

  12. Younis, S.G.: Asymptotically zero energy computing using split-level charge recovery logic. Ph.D. thesis (1994). http://dspace.mit.edu/handle/1721.1/7058

  13. Starosel’skii, V.I.: Adiabatic logic circuits: a review. Russian Microelectron. 31(1), 37–58 (2002)

    Article  Google Scholar 

  14. Lim, J., Kim, D.-G., Chae, S.-I.: Reversible energy recovery logic circuit and its 8-phase clocked power generator for ultra-low-power applications. IEICE Trans. Electron. E82-C(4), 646–653 (1999)

    Google Scholar 

  15. Lim, J., Kim, D.-G., Chae, S.-I.: nMOS reversible energy recovery logic for ultra-low-energy applications. IEEE J. Solid-State Circuits 35(6), 865–875 (2000)

    Article  Google Scholar 

  16. Yibin, Y., Roy, K.: Energy recovery circuits using reversible and partially reversible logic. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 43(9), 769–778 (1996). doi:10.1109/81.536746

    Article  Google Scholar 

  17. Dueck, G.W.: Synthesis of Toffoli Networks: status and challenges. In: International Symposium on Electronic System Design (ISED), 19–22 December 2012, pp. 11–16 (2012). doi:10.1109/ISED.2012.26

  18. Lent, C.S., Liu, M., Lu, Y.: Bennett clocking of quantum-dot cellular automata and the limits to binary logic scaling. Nanotechnology 17(16), 4240–4251 (2006)

    Google Scholar 

  19. Bennett, C.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532 (1973)

    Article  MATH  Google Scholar 

  20. Texas Instruments Inc.: The TTL Data Book for Design Engineers, 2nd edn, pp. 7-484–7-486. Texas Instruments Inc., Dallas (1976)

    Google Scholar 

  21. Vladimirescu, A., Liu, S.: The simulation of MOS integrated circuits using SPICE2. Technical report no. UCB/ERL M80/7, University of California, Berkeley (1980)

    Google Scholar 

  22. Arizona State University Predictive Technology Model (PTM) Website [Online]. http://ptm.asu.edu

  23. Weinstein, D., Bhave, S.A.: The resonant body transistor. Nano Lett. 10(4), 1234–1237 (2010). doi:10.1021/nl9037517

    Article  Google Scholar 

  24. Hänninen, I., Lent, C.S., Snider, G.L.: Models of irreversibility for binary adders. In: Proceedings of IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), Invited paper, Columbus, OH, USA, 4–7 August 2013, pp. 1071–1074 (2013)

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank the organizers and attendees of the Workshop on Field-Coupled Nanocomputing, February 7–8, 2013, Tampa, Florida, USA, for their suggestions and constructive critique on the design of emerging reversible circuits. This work was supported by the Academy of Finland under research grant 132869 and the Finnish Foundation for Technology Promotion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismo Hänninen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hänninen, I., Lu, H., Blair, E.P., Lent, C.S., Snider, G.L. (2014). Reversible and Adiabatic Computing: Energy-Efficiency Maximized. In: Anderson, N., Bhanja, S. (eds) Field-Coupled Nanocomputing. Lecture Notes in Computer Science(), vol 8280. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43722-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43722-3_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43721-6

  • Online ISBN: 978-3-662-43722-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics