Skip to main content

Experiments for Emotion Estimation from Biological Signals and Its Application

  • Chapter
Transactions on Computational Science XXIII

Part of the book series: Lecture Notes in Computer Science ((TCOMPUTATSCIE,volume 8490))

  • 734 Accesses

Abstract

This paper describes elementary experiments for a technique to estimate the emotion of a user from the biological signals of user’s central nervous system, such as cerebral blood flow and brain wave. The proposed technique uses multiple regression analysis in providing a high resolution measure to the emotional valence, which could not be realized with the existing methods based on peripheral nervous system. To demonstrate the effectiveness of the proposed emotion estimation technique in emotion based interaction, we also implemented an emotional painting tool that dynamically adapts the colors of brush and the outline of canvas to the estimated emotion of the user by recording biological signals and analyzing them in real time. The tool allows users to create original images that reflect their emotion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mitsuyoshi, S., Ren, F., Tanaka, Y., Kuroiwa, S.: Non-verbal voice emotion analysis system. International Journal of Innovative Computing, Information and Control 12(4), 819–830 (2006)

    Google Scholar 

  2. Shugrina, M., Betke, M., Collomosse, J.: Empathic painting: interactive stylization through observed emotional state. In: Proceedings of the 4th International Symposium on Non-Photorealistic Animation and Rendering, NPAR 2006, pp. 87–96. ACM, New York (2006)

    Google Scholar 

  3. Russell, J.: A circumplex model of affect. Journal of Personality and Social Psychology 39(6), 1161–1178 (1980)

    Article  Google Scholar 

  4. Lang, P.J., Bradley, M.M., Cuthbert, B.N.: International affective picture system (iaps): Technical manual and affective ratings. Technical report, University of Florida (1999)

    Google Scholar 

  5. Mandryk, R.L., Atkins, M.S., Inkpen, K.M.: A continuous and objective evaluation of emotional experience with interactive play environments. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2006, pp. 1027–1036. ACM, New York (2006)

    Google Scholar 

  6. Jones, C.M., Troen, T.: Biometric valence and arousal recognition. In: Proceedings of the 19th Australasian Conference on Computer-Human Interaction: Entertaining User Interfaces, OZCHI 2007, pp. 191–194. ACM, New York (2007)

    Google Scholar 

  7. Kim, M., Park, K.S., Kim, D., Cho, Y.: Emotional intelligent contents: Expressing user’s own emotion within contents. In: Anacleto, J.C., Fels, S., Graham, N., Kapralos, B., Saif El-Nasr, M., Stanley, K. (eds.) ICEC 2011. LNCS, vol. 6972, pp. 391–394. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. Wu, D., Courtney, C.G., Lance, B.J., Narayanan, S.S., Dawson, M.E., Oie, K.S., Parsons, T.D.: Optimal arousal identification and classification for affective computing using physiological signals: Virtual reality stroop task. IEEE Transactions on Affective Computing 1(2), 109–118 (2010)

    Article  Google Scholar 

  9. Cano, M.E., Class, Q.A., Polich, J.: Affective valence, stimulus attributes, and p300: Color vs. black/white and normal vs. scrambled images. International Journal of Psychophysiology 71(1), 17–24 (2009) (Electrophysiology of Affect and Cognition)

    Google Scholar 

  10. Murugappan, M.: Classification of human emotion from EEG using discrete wavelet transform. Journal of Biomedical Science and Engineering 03(04), 390–396 (2010)

    Article  Google Scholar 

  11. Yuen, C.T., San, W.S., Seong, T.C., Rizon, M.: Classification of human emotions from eeg signals using statistical features and neural network. International Journal of Integrated Engineering 1(3), 71–79 (2011)

    Google Scholar 

  12. Bos, D.O.: Eeg-based emotion recognition the influence of visual and auditory stimuli (2006)

    Google Scholar 

  13. Mikhail, M., El-Ayat, K., El Kaliouby, R., Coan, J., Allen, J.J.B.: Emotion detection using noisy eeg data. In: Proceedings of the 1st Augmented Human International Conference, AH 2010, vol. 7, pp. 7:1–7:7. ACM, New York (2010)

    Google Scholar 

  14. Pan, J.: Physiological sensing for affective computing. PhD Thesis, University of Rostock (2011)

    Google Scholar 

  15. Friedman, J.H.: Multivariate Adaptive Regression Splines. The Annals of Statistics 19(1), 1–67 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  16. Plutchik, R.: The emotions. University Press of Americas (1991)

    Google Scholar 

  17. Pan, J.: An analytic study on the color expression of opposed feeling-images. The Color Science Association of Japan 23(4), 232–239 (1999)

    Google Scholar 

  18. Omata, M., Naito, Y., Imamiya, A.: Design and evaluation of an online chat system using speech balloons changed by user’s biomedical signals. Human Interface Society 10(2), 179–189 (2008)

    Google Scholar 

  19. Isbister, K., Höök, K., Sharp, M., Laaksolahti, J.: The sensual evaluation instrument: developing an affective evaluation tool. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2006, pp. 1163–1172. ACM, New York (2006)

    Google Scholar 

  20. Lockyer, M., Bartram, L., Riecke, B.E.: Simple motion textures for ambient affect. In: Proceedings of the International Symposium on Computational Aesthetics in Graphics, Visualization, and Imaging, CAe 2011, pp. 89–96. ACM, New York (2011)

    Chapter  Google Scholar 

  21. Moriwaki, K., Omata, M., Kanuka, D., Mao, X., Imamiya, A.: A design of visual effects for affecting user arousal by measuring user’s physiological data. The Institute of Image Electronics Engineers of Japan 40(5), 768–777 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Omata, M., Kanuka, D., Mao, X. (2014). Experiments for Emotion Estimation from Biological Signals and Its Application. In: Gavrilova, M.L., Tan, C.J.K., Mao, X., Hong, L. (eds) Transactions on Computational Science XXIII. Lecture Notes in Computer Science, vol 8490. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43790-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43790-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43789-6

  • Online ISBN: 978-3-662-43790-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics