Skip to main content

Real-Time Subject-Dependent EEG-Based Emotion Recognition Algorithm

  • Chapter
Transactions on Computational Science XXIII

Part of the book series: Lecture Notes in Computer Science ((TCOMPUTATSCIE,volume 8490))

Abstract

In this paper, we proposed a real-time subject-dependent EEG-based emotion recognition algorithm and tested it on experiments’ databases and the benchmark database DEAP. The algorithm consists of two parts: feature extraction and data classification with Support Vector Machine (SVM). Use of a Fractal Dimension feature in combination with statistical and Higher Order Crossings (HOC) features gave results with the best accuracy and with adequate computational time. The features were calculated from EEG using a sliding window. The proposed algorithm can recognize up to 8 emotions such as happy, surprised, satisfied, protected, angry, frightened, unconcerned, and sad using 4 electrodes in real time. Two experiments with audio and visual stimuli were implemented, and the Emotiv EPOC device was used to collect EEG data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Biosemi, http://www.biosemi.com

  2. Emotiv, http://www.emotiv.com

  3. American electroencephalographic society guidelines for standard electrode position nomenclature. Journal of Clinical Neurophysiology 8(2), 200–202 (1991)

    Google Scholar 

  4. Accardo, A., Affinito, M., Carrozzi, M., Bouquet, F.: Use of the fractal dimension for the analysis of electroencephalographic time series. Biological Cybernetics 77(5), 339–350 (1997)

    Article  MATH  Google Scholar 

  5. Aftanas, L.I., Lotova, N.V., Koshkarov, V.I., Popov, S.A.: Non-linear dynamical coupling between different brain areas during evoked emotions: An EEG investigation. Biological Psychology 48(2), 121–138 (1998)

    Article  Google Scholar 

  6. Anderson, E.W., Potter, K.C., Matzen, L.E., Shepherd, J.F., Preston, G.A., Silva, C.T.: A user study of visualization effectiveness using EEG and cognitive load. Computer Graphics Forum 30(3), 791–800 (2011)

    Article  Google Scholar 

  7. Arvaneh, M., Cuntai, G., Kai Keng, A., Chai, Q.: Optimizing the channel selection and classification accuracy in EEG-Based BCI. IEEE Transactions on Biomedical Engineering 58(6), 1865–1873 (2011)

    Article  Google Scholar 

  8. Aspiras, T.H., Asari, V.K.: Log power representation of EEG spectral bands for the recognition of emotional states of mind. In: 8th International Conference on Information, Communications and Signal Processing (ICICS 2011), pp. 1–5 (2011)

    Google Scholar 

  9. Bechara, A., Damasio, H., Damasio, A.R.: Emotion, decision making and the orbitofrontal cortex. Cerebral Cortex 10(3), 295–307 (2000)

    Article  Google Scholar 

  10. Bolls, P.D., Lang, A., Potter, R.F.: The effects of message valence and listener arousal on attention, memory, and facial muscular responses to radio advertisements. Communication Research 28(5), 627–651 (2001)

    Article  Google Scholar 

  11. Bos, D.O.: EEG-based emotion recognition (2006), http://hmi.ewi.utwente.nl/verslagen/capita-selecta/CS-Oude_Bos-Danny.pdf

  12. Bradley, M.M.: Measuring emotion: The self-assessment manikin and the semantic differential. Journal of Behavior Therapy and Experimental Psychiatry 25(1), 49–59 (1994)

    Article  Google Scholar 

  13. Bradley, M.M., Lang, P.J.: The international affective digitized sounds (2nd edn., IADS-2): Affective ratings of sounds and instruction manual. Tech. rep., University of Florida, Gainesville (2007)

    Google Scholar 

  14. Burgdorf, J., Panksepp, J.: The neurobiology of positive emotions. Neuroscience & Biobehavioral Reviews 30(2), 173–187 (2006)

    Article  Google Scholar 

  15. Cao, M., Fang, G., Ren, F.: EEG-based emotion recognition in Chinese emotional words. In: Proceedings of CCIS 2011, pp. 452–456 (2011)

    Google Scholar 

  16. Chanel, G., Rebetez, C., Betrancourt, M., Pun, T.: Emotion assessment from physiological signals for adaptation of game difficulty. IEEE Transactions on Systems, Man, and Cybernetics Part A: Systems and Humans 41(6), 1052–1063 (2011)

    Article  Google Scholar 

  17. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines (2001), http://www.csie.ntu.edu.tw/~cjlin/libsvm

  18. Cristianini, N., Shawe-Taylor, J.: An introduction to Support Vector Machines: and other kernel-based learning methods. Cambridge University Press, New York (2000)

    Book  Google Scholar 

  19. D’Alessandro, M., Esteller, R., Vachtsevanos, G., Hinson, A., Echauz, J., Litt, B.: Epileptic seizure prediction using hybrid feature selection over multiple intracranial EEG electrode contacts: a report of four patients. IEEE Transactions on Biomedical Engineering 50(5), 603–615 (2003)

    Article  Google Scholar 

  20. Delorme, A., Makeig, S.: EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods 134(1), 9–21 (2004)

    Article  Google Scholar 

  21. Duvinage, M., Castermans, T., Dutoit, T., Petieau, M., Hoellinger, T., Saedeleer, C.D., Seetharaman, K., Cheron, G.: A P300-based quantitative comparison between the emotiv epoc headset and a medical EEG device. In: Proceedings of the 9th IASTED International Conference on Biomedical Engineering, pp. 37–42 (2012)

    Google Scholar 

  22. Gao, T., Wu, D., Huang, Y., Yao, D.: Detrended fluctuation analysis of the human EEG during listening to emotional music. J. Elect. Sci. Tech. Chin. 5, 272–277 (2007)

    Google Scholar 

  23. Hadjidimitriou, S., Zacharakis, A., Doulgeris, P., Panoulas, K., Hadjileontiadis, L., Panas, S.: Sensorimotor cortical response during motion reflecting audiovisual stimulation: evidence from fractal EEG analysis. Medical and Biological Engineering and Computing 48(6), 561–572 (2010)

    Article  Google Scholar 

  24. Hadjidimitriou, S.K., Zacharakis, A.I., Doulgeris, P.C., Panoulas, K.J., Hadjileontiadis, L.J., Panas, S.M.: Revealing action representation processes in audio perception using fractal EEG analysis. IEEE Transactions on Biomedical Engineering 58(4), 1120–1129 (2011)

    Article  Google Scholar 

  25. Higuchi, T.: Approach to an irregular time series on the basis of the fractal theory. Physica D: Nonlinear Phenomena 31(2), 277–283 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  26. Hosseini, S.A., Khalilzadeh, M.A.: Emotional stress recognition system using EEG and psychophysiological signals: Using new labelling process of EEG signals in emotional stress state. In: 2010 International Conference on Biomedical Engineering and Computer Science (ICBECS), pp. 1–6. IEEE (2010)

    Google Scholar 

  27. Hou, X., Sourina, O.: Emotion-enabled haptic-based serious game for post stroke rehabilitation. In: Proceedings of VRST 2013, pp. 31–34 (2013)

    Google Scholar 

  28. Hsu, C.W., Chang, C.C., Lin, C.J.: A practical guide to support vector classification. Tech. rep., National Taiwan University, Taipei (2003)

    Google Scholar 

  29. Huang, D., Guan, C., Kai Keng, A., Haihong, Z., Yaozhang, P.: Asymmetric spatial pattern for EEG-based emotion detection. In: The 2012 International Joint Conference on Neural Networks (IJCNN), pp. 1–7 (2012)

    Google Scholar 

  30. Jones, N.A., Fox, N.A.: Electroencephalogram asymmetry during emotionally evocative films and its relation to positive and negative affectivity. Brain and Cognition 20(2), 280–299 (1992)

    Article  Google Scholar 

  31. Kandel, E.R., Schwartz, J.H., Jessell, T.M., et al.: Principles of neural science, vol. 4. McGraw-Hill, New York (2000)

    Google Scholar 

  32. Kedem, B.: Time Series Analysis by Higher Order Crossing. IEEE Press, New York (1994)

    Google Scholar 

  33. Khosrowabadi, R., Wahab bin Abdul Rahman, A.: Classification of EEG correlates on emotion using features from gaussian mixtures of EEG spectrogram. In: 2010 International Conference on Information and Communication Technology for the Muslim World (ICT4M), pp. E102–E107. IEEE (2010)

    Google Scholar 

  34. Kil, D.H., Shin, F.B.: Pattern recognition and prediction with applications to signal characterization. AIP series in modern acoustics and signal processing. AIP Press, Woodbury (1996)

    Google Scholar 

  35. Koelstra, S., Muhl, C., Soleymani, M., Lee, J.S., Yazdani, A., Ebrahimi, T., Pun, T., Nijholt, A., Patras, I.: DEAP: A database for emotion analysis using physiological signals. IEEE Transactions on Affective Computing 3(1), 18–31 (2012)

    Article  Google Scholar 

  36. Koelstra, S., Muhl, C., Soleymani, M., Lee, J.S., Yazdani, A., Ebrahimi, T., Pun, T., Nijholt, A., Patras, I.: DEAP dataset (2012), http://www.eecs.qmul.ac.uk/mmv/datasets/deap

  37. Kringelbach, M.L.: The human orbitofrontal cortex: Linking reward to hedonic experience. Nature Reviews Neuroscience 6(9), 691–702 (2005)

    Article  Google Scholar 

  38. Kulish, V., Sourin, A., Sourina, O.: Analysis and visualization of human electroencephalograms seen as fractal time series. Journal of Mechanics in Medicine and Biology 26(2), 175–188 (2006)

    Article  Google Scholar 

  39. Kulish, V., Sourin, A., Sourina, O.: Human electroencephalograms seen as fractal time series: Mathematical analysis and visualization. Computers in Biology and Medicine 36(3), 291–302 (2006)

    Article  Google Scholar 

  40. Lal, T.N., Schroder, M., Hinterberger, T., Weston, J., Bogdan, M., Birbaumer, N., Scholkopf, B.: Support vector channel selection in BCI. IEEE Transactions on Biomedical Engineering 51(6), 1003–1010 (2004)

    Article  Google Scholar 

  41. Lang, P., Bradley, M., Cuthbert, B.: International affective picture system (IAPS): Affective ratings of pictures and instruction manual. Technical report a-8, University of Florida, Gainesville, FL (2008)

    Google Scholar 

  42. Lin, Y.P., Wang, C.H., Jung, T.P., Wu, T.L., Jeng, S.K., Duann, J.R., Chen, J.H.: EEG-based emotion recognition in music listening. IEEE Transactions on Biomedical Engineering 57(7), 1798–1806 (2010)

    Article  Google Scholar 

  43. Liu, Y., Sourina, O., Nguyen, M.K.: Real-time EEG-based human emotion recognition and visualization. In: Proc. 2010 Int. Conf. on Cyberworlds, Singapore, pp. 262–269 (2010)

    Google Scholar 

  44. Liu, Y., Sourina, O., Nguyen, M.K.: Real-time EEG-based emotion recognition and its applications. In: Gavrilova, M.L., Tan, C.J.K., Sourin, A., Sourina, O. (eds.) Transactions on Computational Science XII. LNCS, vol. 6670, pp. 256–277. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  45. Liu, Y., Sourina, O.: EEG-based emotion-adaptive advertising. In: Proc. ACII 2013, Geneva, pp. 843–848 (2013)

    Google Scholar 

  46. Liu, Y., Sourina, O.: EEG databases for emotion recognition. In: Proc. 2013 Int. Conf. on Cyberworlds, Japan (2013)

    Google Scholar 

  47. Liu, Y., Sourina, O.: Real-time fractal-based valence level recognition from EEG. In: Gavrilova, M.L., Tan, C.J.K., Kuijper, A. (eds.) Transactions on Computational Science XVIII. LNCS, vol. 7848, pp. 101–120. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  48. Lutzenberger, W., Elbert, T., Birbaumer, N., Ray, W.J., Schupp, H.: The scalp distribution of the fractal dimension of the EEG and its variation with mental tasks. Brain Topography 5(1), 27–34 (1992)

    Article  Google Scholar 

  49. Maragos, P., Sun, F.K.: Measuring the fractal dimension of signals: morphological covers and iterative optimization. IEEE Transactions on Signal Processing 41(1), 108–121 (1993)

    Article  MATH  Google Scholar 

  50. Mauss, I.B., Robinson, M.D.: Measures of emotion: A review. Cognition and Emotion 23(2), 209–237 (2009)

    Article  Google Scholar 

  51. Mehrabian, A.: Framework for a comprehensive description and measurement of emotional states. Genetic, Social, and General Psychology Monographs 121(3), 339–361 (1995)

    Google Scholar 

  52. Mehrabian, A.: Pleasure-arousal-dominance: A general framework for describing and measuring individual differences in temperament. Current Psychology 14(4), 261–292 (1996)

    Article  MathSciNet  Google Scholar 

  53. Noble, W.S.: What is a support vector machine? Nat. Biotech. 24(12), 1565–1567 (2006)

    Article  MathSciNet  Google Scholar 

  54. O’Regan, S., Faul, S., Marnane, W.: Automatic detection of EEG artefacts arising from head movements. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 6353–6356 (2010)

    Google Scholar 

  55. Petrantonakis, P.C., Hadjileontiadis, L.J.: Emotion recognition from EEG using higher order crossings. IEEE Transactions on Information Technology in Biomedicine 14(2), 186–197 (2010)

    Article  Google Scholar 

  56. Petrantonakis, P.C., Hadjileontiadis, L.J.: Adaptive emotional information retrieval from EEG signals in the time-frequency domain. IEEE Transactions on Signal Processing 60(5), 2604–2616 (2012)

    Article  MathSciNet  Google Scholar 

  57. Picard, R.W., Vyzas, E., Healey, J.: Toward machine emotional intelligence: Analysis of affective physiological state. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(10), 1175–1191 (2001)

    Article  Google Scholar 

  58. Pradhan, N., Narayana Dutt, D.: Use of running fractal dimension for the analysis of changing patterns in electroencephalograms. Computers in Biology and Medicine 23(5), 381–388 (1993)

    Article  Google Scholar 

  59. Ranky, G.N., Adamovich, S.: Analysis of a commercial EEG device for the control of a robot arm. In: Proceedings of the 2010 IEEE 36th Annual Northeast Bioengineering Conference, pp. 1–2 (2010)

    Google Scholar 

  60. Russell, J.A.: Affective space is bipolar. Journal of Personality and Social Psychology 37(3), 345–356 (1979)

    Article  Google Scholar 

  61. Schaaff, K., Schultz, T.: Towards emotion recognition from electroencephalographic signals. In: 3rd International Conference on Affective Computing and Intelligent Interaction and Workshops, ACII 2009, pp. 1–6 (2009)

    Google Scholar 

  62. Soleymani, M., Pantic, M., Pun, T.: Multimodal emotion recognition in response to videos. IEEE Transactions on Affective Computing 3(2), 211–223 (2012)

    Article  Google Scholar 

  63. Sourina, O., Kulish, V.V., Sourin, A.: Novel tools for quantification of brain responses to music stimuli. In: Proc. of 13th International Conference on Biomedical Engineering, ICBME 2008, pp. 411–414 (2008)

    Google Scholar 

  64. Sourina, O., Liu, Y.: A fractal-based algorithm of emotion recognition from EEG using arousal-valence model. In: BIOSIGNALS, pp. 209–214 (2011)

    Google Scholar 

  65. Sourina, O., Liu, Y., Nguyen, M.K.: Real-time EEG-based emotion recognition for music therapy. Journal on Multimodal User Interfaces 5(1-2), 27–35 (2012)

    Article  Google Scholar 

  66. Sourina, O., Sourin, A., Kulish, V.: EEG data driven animation and its application. In: Gagalowicz, A., Philips, W. (eds.) MIRAGE 2009. LNCS, vol. 5496, pp. 380–388. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  67. Stam, C.J.: Nonlinear dynamical analysis of EEG and MEG: Review of an emerging field. Clinical Neurophysiology 116(10), 2266–2301 (2005)

    Article  Google Scholar 

  68. Stytsenko, K., Jablonskis, E., Prahm, C.: Evaluation of consumer EEG device Emotiv EPOC. Poster session presented at MEi: CogSci Conference 2011, Ljubljana (2011)

    Google Scholar 

  69. Szily, E., Kéri, S.: Emotion-related brain regions. Ideggyógyászati Szemle 61(3-4), 77 (2008)

    Google Scholar 

  70. Takahashi, K.: Remarks on emotion recognition from multi-modal bio-potential signals. In: 2004 IEEE International Conference on Industrial Technology, vol. 3, pp. 1138–1143 (2004)

    Google Scholar 

  71. Vecchiato, G., Toppi, J., Astolfi, L., De Vico Fallani, F., Cincotti, F., Mattia, D., Bez, F., Babiloni, F.: Spectral EEG frontal asymmetries correlate with the experienced pleasantness of tv commercial advertisements. Medical and Biological Engineering and Computing 49(5), 579–583 (2011)

    Article  Google Scholar 

  72. Wang, Q., Sourina, O., Nguyen, M.K.: EEG-based “serious” games design for medical applications. In: Proc. 2010 Int. Conf. on Cyberworlds, Singapore, pp. 270–276 (2010)

    Google Scholar 

  73. Wang, Q., Sourina, O., Nguyen, M.: Fractal dimension based neurofeedback in serious games. The Visual Computer 27(4), 299–309 (2011)

    Article  Google Scholar 

  74. Zhang, Q., Lee, M.: Analysis of positive and negative emotions in natural scene using brain activity and gist. Neurocomputing 72(4-6), 1302–1306 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Liu, Y., Sourina, O. (2014). Real-Time Subject-Dependent EEG-Based Emotion Recognition Algorithm. In: Gavrilova, M.L., Tan, C.J.K., Mao, X., Hong, L. (eds) Transactions on Computational Science XXIII. Lecture Notes in Computer Science, vol 8490. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43790-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43790-2_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43789-6

  • Online ISBN: 978-3-662-43790-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics