Abstract
In this research, the stability problem of explicit integration schemes in simulations of deformable objects is addressed. We present a method that makes it possible to simulate a volumetric mesh using the magnitude order of the limit time step provided by another optimal mesh. The volumetric object to simulate, represented by a surface mesh (made up of triangles), is extracted from an optimal volumetric mesh (e.g. a tetrahedralized cube). The optimal mesh is easily tetrahedralized and thus the overall quality can rarely be surpassed. The simulation of the intersection can be performed in a stable manner using the eXtended Finite Element Method (XFEM) which introduces discontinuities (e.g. cutting and dissection) while it maintains the original mesh configuration. The elements (tetrahedra) are classified and those that lie outside the surface mesh are fixed and neglected in the simulation. Interface elements (those that lie inside and outside the surface mesh) are dissected and only the volume part lying inside the surface mesh is simulated. The intersection is performed only once before starting the simulation. Using our approach, the meshing methods and mesh optimization strategies are avoided. Furthermore, our approach can be directly switched to implicit solvers. The proposed method is useful for designing simulations of deformable objects without meshing techniques.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Shewchuk, J.R.: What is a good linear element? interpolation, conditioning, and quality measures. In: 11th International Meshing Roundtable, pp. 115–126. Springer (2002)
Müller, M., Gross, M.: Interactive virtual materials. In: Proceedings of Graphics Interface 2004, GI 2004, pp. 239–246 (2004)
Terzopoulos, D., Platt, J., Barr, A., Fleischer, K.: Elastically deformable models. SIGGRAPH Comput. Graph. 21(4), 205–214 (1987), http://doi.acm.org/10.1145/37402.37427
Irving, G., Teran, J., Fedkiw, R.: Tetrahedral and hexahedral invertible finite elements. Graph. Models 68(2), 66–89 (2006), http://dx.doi.org/10.1016/j.gmod.2005.03.007
Wicke, M., Botsch, M., Gross, M.: A Finite Element Method on Convex Polyhedra. Computer Graphics Forum 26(3), 355–364 (2007)
Martin, S., Kaufmann, P., Botsch, M., Wicke, M., Gross, M.: Polyhedral Finite Elements Using Harmonic Basis Functions. Computer Graphics Forum 27(5), 1521–1529 (2008)
Adams, B., Ovsjanikov, M., Wand, M., Seidel, H.-P., Guibas, L.J.: Meshless modeling of deformable shapes and their motion. In: Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA 2008, pp. 77–86. Eurographics Association, Aire-la-Ville (2008), http://dl.acm.org/citation.cfm?id=1632592.1632605
Faure, F., Gilles, B., Bousquet, G., Pai, D.K.: Sparse meshless models of complex deformable solids. ACM Trans. Graph. 30(4), 73:1–73:10 (2011), http://doi.acm.org/10.1145/2010324.1964968
Nealen, A., Muller, M., Keiser, R., Boxerman, E., Carlson, M.: Physically Based Deformable Models in Computer Graphics. Computer Graphics Forum 25(4), 809–836 (2006)
Müller, M., Heidelberger, B., Teschner, M., Gross, M.: Meshless deformations based on shape matching. ACM Trans. Graph. 24(3), 471–478 (2005), http://doi.acm.org/10.1145/1073204.1073216
Fierz, B., Spillmann, J., Hoyos, I.A., Harders, M.: Maintaining large time steps in explicit finite element simulations using shape matching. IEEE Transactions on Visualization and Computer Graphics 18(5), 717–728 (2012)
Fierz, B., Spillmann, J., Harders, M.: Element-wise mixed implicit-explicit integration for stable dynamic simulation of deformable objects. In: Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA 2001, pp. 257–266. ACM, New York (2011), http://doi.acm.org/10.1145/2019406.2019440
Aguinaga, I., Fierz, B., Spillmann, J., Harders, M.: Filtering of high modal frequencies for stable real-time explicit integration of deformable objects using the finite element method. Progress in Biophysics and Molecular Biology 103(2-3), 225–235 (2010)
Fierz, B., Spillmann, J., Harders, M.: Stable explicit integration of deformable objects by filtering high modal frequencies. Journal of WSCG 18(1-3), 81–88 (2010)
Courtecuisse, H., Jung, H., Allard, J., Duriez, C., Lee, D.Y., Cotin, S.: GPU-based real-time soft tissue deformation with cutting and haptic feedback. Progress in Biophysics and Molecular Biology 103(2), 159–168 (2010)
Klingner, B.: Tetrahedral mesh improvement. Ph.D. dissertation, Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley, California (2008)
Steinemann, D., Harders, M., Gross, M., Szekely, G.: Hybrid cutting of deformable solids. In: IEEE Virtual Reality, pp. 35–42 (2006)
Shewchuk, J.R.: Two discrete optimization algorithms for the topological improvement of tetrahedral meshes. Unpublished manuscript (2002), http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.6990
Freitag, L.A., Ollivier-Gooch, C.: Tetrahedral mesh improvement using swapping and smoothing. International Journal for Numerical Methods in Engineering 40(21), 3979–4002 (1997)
Klingner, B., Shewchuk, J.: Aggressive tetrahedral mesh improvement. In: Proc. of the 16th International Meshing Roundtable, pp. 3–23 (2007)
Wicke, M., Ritchie, D., Klingner, B.: Dynamic local remeshing for elastoplastic simulation. ACM Transactions on Graphics (TOG) 29(4), 1–11 (2010)
Gutiérrez, L.F., Aguinaga, I., Fierz, B., Ramos, F., Harders, M.: Pitting a new hybrid approach for maintaining simulation stability after mesh cutting against standard remeshing strategies. In: Proceedings of Computer Graphics International (June 2011)
Burkhart, D., Hamann, B., Umlauf, G.: Adaptive and Feature-Preserving Subdivision for High-Quality Tetrahedral Meshes. Computer Graphics Forum 29(1), 117–127 (2010)
Nesme, M., Kry, P.G., Jeřábková, L., Faure, F.: Preserving topology and elasticity for embedded deformable models. ACM Trans. Graph. 28(3), 52:1–52:9 (2009), http://doi.acm.org/10.1145/1531326.1531358
Kaufmann, P., Martin, S., Botsch, M., Grinspun, E., Gross, M.: Enrichment textures for detailed cutting of shells. ACM Trans. Graph. 28(3), 50:1–50:10 (2009), http://doi.acm.org/10.1145/1531326.1531356
Jeřábková, L., Kuhlen, T.: Stable cutting of deformable objects in virtual environments using xfem. IEEE Comput. Graph. Appl. 29(2), 61–71 (2009)
Molino, N., Bao, Z., Fedkiw, R.: A virtual node algorithm for changing mesh topology during simulation. ACM Trans. Graph (SIGGRAPH Proc.) 23, 385–392 (2004)
Courant, R., Friedrichs, K., Lewy, H.: Über die partiellen differenzengleichungen der mathematischen physik. Mathematische Annalen 100(1), 32–74 (1928)
Babuska, I., Melenk, J.M.: The partition of unity method. International Journal of Numerical Methods in Engineering 40, 727–758 (1997)
Gutiérrez, L.F., Ramos, F.: Xfem framework for cutting soft tissue - including topological changes in a surgery simulation. In: GRAPP 2010, pp. 275–283 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Gutiérrez, L.F., Vargas, S., Ramos, F. (2014). Fast and Stable Deformations Using the Mesh Intersection Algorithm. In: Gavrilova, M.L., Tan, C.J.K., Mao, X., Hong, L. (eds) Transactions on Computational Science XXIII. Lecture Notes in Computer Science, vol 8490. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43790-2_2
Download citation
DOI: https://doi.org/10.1007/978-3-662-43790-2_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-43789-6
Online ISBN: 978-3-662-43790-2
eBook Packages: Computer ScienceComputer Science (R0)