Skip to main content

Fast and Stable Deformations Using the Mesh Intersection Algorithm

  • Chapter
Transactions on Computational Science XXIII

Part of the book series: Lecture Notes in Computer Science ((TCOMPUTATSCIE,volume 8490))

  • 712 Accesses

Abstract

In this research, the stability problem of explicit integration schemes in simulations of deformable objects is addressed. We present a method that makes it possible to simulate a volumetric mesh using the magnitude order of the limit time step provided by another optimal mesh. The volumetric object to simulate, represented by a surface mesh (made up of triangles), is extracted from an optimal volumetric mesh (e.g. a tetrahedralized cube). The optimal mesh is easily tetrahedralized and thus the overall quality can rarely be surpassed. The simulation of the intersection can be performed in a stable manner using the eXtended Finite Element Method (XFEM) which introduces discontinuities (e.g. cutting and dissection) while it maintains the original mesh configuration. The elements (tetrahedra) are classified and those that lie outside the surface mesh are fixed and neglected in the simulation. Interface elements (those that lie inside and outside the surface mesh) are dissected and only the volume part lying inside the surface mesh is simulated. The intersection is performed only once before starting the simulation. Using our approach, the meshing methods and mesh optimization strategies are avoided. Furthermore, our approach can be directly switched to implicit solvers. The proposed method is useful for designing simulations of deformable objects without meshing techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Shewchuk, J.R.: What is a good linear element? interpolation, conditioning, and quality measures. In: 11th International Meshing Roundtable, pp. 115–126. Springer (2002)

    Google Scholar 

  2. Müller, M., Gross, M.: Interactive virtual materials. In: Proceedings of Graphics Interface 2004, GI 2004, pp. 239–246 (2004)

    Google Scholar 

  3. Terzopoulos, D., Platt, J., Barr, A., Fleischer, K.: Elastically deformable models. SIGGRAPH Comput. Graph. 21(4), 205–214 (1987), http://doi.acm.org/10.1145/37402.37427

    Article  Google Scholar 

  4. Irving, G., Teran, J., Fedkiw, R.: Tetrahedral and hexahedral invertible finite elements. Graph. Models 68(2), 66–89 (2006), http://dx.doi.org/10.1016/j.gmod.2005.03.007

    Article  MATH  Google Scholar 

  5. Wicke, M., Botsch, M., Gross, M.: A Finite Element Method on Convex Polyhedra. Computer Graphics Forum 26(3), 355–364 (2007)

    Article  Google Scholar 

  6. Martin, S., Kaufmann, P., Botsch, M., Wicke, M., Gross, M.: Polyhedral Finite Elements Using Harmonic Basis Functions. Computer Graphics Forum 27(5), 1521–1529 (2008)

    Article  Google Scholar 

  7. Adams, B., Ovsjanikov, M., Wand, M., Seidel, H.-P., Guibas, L.J.: Meshless modeling of deformable shapes and their motion. In: Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA 2008, pp. 77–86. Eurographics Association, Aire-la-Ville (2008), http://dl.acm.org/citation.cfm?id=1632592.1632605

    Google Scholar 

  8. Faure, F., Gilles, B., Bousquet, G., Pai, D.K.: Sparse meshless models of complex deformable solids. ACM Trans. Graph. 30(4), 73:1–73:10 (2011), http://doi.acm.org/10.1145/2010324.1964968

  9. Nealen, A., Muller, M., Keiser, R., Boxerman, E., Carlson, M.: Physically Based Deformable Models in Computer Graphics. Computer Graphics Forum 25(4), 809–836 (2006)

    Article  Google Scholar 

  10. Müller, M., Heidelberger, B., Teschner, M., Gross, M.: Meshless deformations based on shape matching. ACM Trans. Graph. 24(3), 471–478 (2005), http://doi.acm.org/10.1145/1073204.1073216

    Article  Google Scholar 

  11. Fierz, B., Spillmann, J., Hoyos, I.A., Harders, M.: Maintaining large time steps in explicit finite element simulations using shape matching. IEEE Transactions on Visualization and Computer Graphics 18(5), 717–728 (2012)

    Article  Google Scholar 

  12. Fierz, B., Spillmann, J., Harders, M.: Element-wise mixed implicit-explicit integration for stable dynamic simulation of deformable objects. In: Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA 2001, pp. 257–266. ACM, New York (2011), http://doi.acm.org/10.1145/2019406.2019440

    Google Scholar 

  13. Aguinaga, I., Fierz, B., Spillmann, J., Harders, M.: Filtering of high modal frequencies for stable real-time explicit integration of deformable objects using the finite element method. Progress in Biophysics and Molecular Biology 103(2-3), 225–235 (2010)

    Article  Google Scholar 

  14. Fierz, B., Spillmann, J., Harders, M.: Stable explicit integration of deformable objects by filtering high modal frequencies. Journal of WSCG 18(1-3), 81–88 (2010)

    Google Scholar 

  15. Courtecuisse, H., Jung, H., Allard, J., Duriez, C., Lee, D.Y., Cotin, S.: GPU-based real-time soft tissue deformation with cutting and haptic feedback. Progress in Biophysics and Molecular Biology 103(2), 159–168 (2010)

    Article  Google Scholar 

  16. Klingner, B.: Tetrahedral mesh improvement. Ph.D. dissertation, Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley, California (2008)

    Google Scholar 

  17. Steinemann, D., Harders, M., Gross, M., Szekely, G.: Hybrid cutting of deformable solids. In: IEEE Virtual Reality, pp. 35–42 (2006)

    Google Scholar 

  18. Shewchuk, J.R.: Two discrete optimization algorithms for the topological improvement of tetrahedral meshes. Unpublished manuscript (2002), http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.6990

  19. Freitag, L.A., Ollivier-Gooch, C.: Tetrahedral mesh improvement using swapping and smoothing. International Journal for Numerical Methods in Engineering 40(21), 3979–4002 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  20. Klingner, B., Shewchuk, J.: Aggressive tetrahedral mesh improvement. In: Proc. of the 16th International Meshing Roundtable, pp. 3–23 (2007)

    Google Scholar 

  21. Wicke, M., Ritchie, D., Klingner, B.: Dynamic local remeshing for elastoplastic simulation. ACM Transactions on Graphics (TOG) 29(4), 1–11 (2010)

    Article  Google Scholar 

  22. Gutiérrez, L.F., Aguinaga, I., Fierz, B., Ramos, F., Harders, M.: Pitting a new hybrid approach for maintaining simulation stability after mesh cutting against standard remeshing strategies. In: Proceedings of Computer Graphics International (June 2011)

    Google Scholar 

  23. Burkhart, D., Hamann, B., Umlauf, G.: Adaptive and Feature-Preserving Subdivision for High-Quality Tetrahedral Meshes. Computer Graphics Forum 29(1), 117–127 (2010)

    Article  Google Scholar 

  24. Nesme, M., Kry, P.G., Jeřábková, L., Faure, F.: Preserving topology and elasticity for embedded deformable models. ACM Trans. Graph. 28(3), 52:1–52:9 (2009), http://doi.acm.org/10.1145/1531326.1531358

  25. Kaufmann, P., Martin, S., Botsch, M., Grinspun, E., Gross, M.: Enrichment textures for detailed cutting of shells. ACM Trans. Graph. 28(3), 50:1–50:10 (2009), http://doi.acm.org/10.1145/1531326.1531356

  26. Jeřábková, L., Kuhlen, T.: Stable cutting of deformable objects in virtual environments using xfem. IEEE Comput. Graph. Appl. 29(2), 61–71 (2009)

    Article  Google Scholar 

  27. Molino, N., Bao, Z., Fedkiw, R.: A virtual node algorithm for changing mesh topology during simulation. ACM Trans. Graph (SIGGRAPH Proc.) 23, 385–392 (2004)

    Article  Google Scholar 

  28. Courant, R., Friedrichs, K., Lewy, H.: Über die partiellen differenzengleichungen der mathematischen physik. Mathematische Annalen 100(1), 32–74 (1928)

    Article  MATH  MathSciNet  Google Scholar 

  29. Babuska, I., Melenk, J.M.: The partition of unity method. International Journal of Numerical Methods in Engineering 40, 727–758 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  30. Gutiérrez, L.F., Ramos, F.: Xfem framework for cutting soft tissue - including topological changes in a surgery simulation. In: GRAPP 2010, pp. 275–283 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gutiérrez, L.F., Vargas, S., Ramos, F. (2014). Fast and Stable Deformations Using the Mesh Intersection Algorithm. In: Gavrilova, M.L., Tan, C.J.K., Mao, X., Hong, L. (eds) Transactions on Computational Science XXIII. Lecture Notes in Computer Science, vol 8490. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43790-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43790-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43789-6

  • Online ISBN: 978-3-662-43790-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics