Abstract
A straightforward natural iterative heuristic for correlation clustering in the general setting is to start from singleton clusters and whenever merging two clusters improves the current quality score merge them into a single cluster. We analyze the approximation and complexity aspects of this heuristic and its randomized variant where two clusters to merge are chosen uniformly at random among cluster pairs amenable to merge.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: ranking and clustering. In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing (STOC 2005), pp. 684–693 (2005)
Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56(1–3), 89–113 (2004)
Becker, H.: A survey of correlation clustering. In: COMS E6998: Advanced Topics in Computational Learning Theory, pp. 1–10 (2005)
Charikar, M., Guruswami, V., Wirth, A.: Clustering with qualitative information. In: Proceedings of the 44th Annual Symposium on Foundations of Computer Science (FOCS 2003), pp. 524–533 (2003)
Demaine, E.D., Immorlica, N.: Correlation clustering with partial information. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.) RANDOM 2003 and APPROX 2003. LNCS, vol. 2764, pp. 1–13. Springer, Heidelberg (2003)
Emanuel, D., Fiat, A.: Correlation clustering – minimizing disagreements on arbitrary weighted graphs. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 208–220. Springer, Heidelberg (2003)
Kearns, M.J., Shapire, R.E., Sellie, L.M.: Toward efficient agnostic learning. Mach. Learn. 17(2/3), 115–142 (1994)
Swamy, C.: Correlation clustering: maximizing agreements via semidefinite programming. In: Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2004), pp. 526–527 (2004)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lingas, A., Persson, M. (2014). Simple Iterative Heuristics for Correlation Clustering. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds) Large-Scale Scientific Computing. LSSC 2013. Lecture Notes in Computer Science(), vol 8353. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43880-0_29
Download citation
DOI: https://doi.org/10.1007/978-3-662-43880-0_29
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-43879-4
Online ISBN: 978-3-662-43880-0
eBook Packages: Computer ScienceComputer Science (R0)