Skip to main content

A Splitting Numerical Scheme for Non-linear Models of Mathematical Finance

  • Conference paper
  • First Online:
Large-Scale Scientific Computing (LSSC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8353))

Included in the following conference series:

  • 1295 Accesses

Abstract

We present and analyze a splitting numerical scheme for two non-linear models of mathematical finance. Each of the problems is split into two parts: a hyperbolic equation solved numerically by using a flux limiter technique and a parabolic equation computed by implicit-explicit finite difference scheme. We show that the presented splitting numerical schemes are convergent and positivity preserving. Numerical results are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agliardi, R., Popivanov, P., Slavova, A.: Nonhypoellipticity and comparison principle for partial differential equations of Black-Scholes type. Nonlinear Anal. Real Word Appl. 12, 1429–1436 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  2. Company, R., Navarro, E., Pintos, J., Ponsoda, E.: Numerical solution of linear and nonlinear Black-Scholes option pricing equations. Int. J. Comp. Math. Appl. 56, 813–821 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ehrhardt, M. (ed.): Nonlinear Models in Mathematical Finance: New Research Trends in Option Pricing. Nova Science Publishers, New York (2008)

    Google Scholar 

  4. Gerisch, A., Griffiths, D.F., Weiner, R., Chaplain, M.A.J.: A positive splitting method for mixed hyperbolic-parabolic systems. Numer. Meth. PDEs 17(2), 152–168 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Hundsdorfer, W., Verwer, J.: Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations. Springer, Heidelberg (2003)

    Book  MATH  Google Scholar 

  6. Koleva, M.N.: Positivity preserving numerical method for non-linear Black-Scholes models. In: Dimov, I., Faragó, I., Vulkov, L. (eds.) NAA 2012. LNCS, vol. 8236, pp. 363–370. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  7. Koleva, M.N., Vulkov, L.G.: A numerical study of a parabolic Monge-Ampère equation in mathematical finance. In: Dimov, I., Dimova, S., Kolkovska, N. (eds.) NMA 2010. LNCS, vol. 6046, pp. 461–468. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. Koleva, M., Vulkov, L.: Quasilinearization numerical scheme for fully nonlinear parabolic problems with applications in models of mathematical finance. Math. Comput. Model. 57(9–10), 2564–2575 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. Lai, C.-H., Parrott, A.K., Rout, S.: A distributed algorithm for European options with nonlinear volatility. Comput. Math. Appl. 49, 885–894 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Le Roux, A.-Y., Le Roux, M.-N.: Numerical solution of a Cauchy problem for nonlinear reaction process. J. Comput. Appl. Math. 214, 90–110 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Le Roux, M.-N.: Numerical solution of a parabolic problem arising in finance. Appl. Numer. Math. 62, 815–832 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. Songzhe, L.: Existence of solution to initial value problem for a parabolic Monge-Ampère equation and application. Nonlinear Anal. 65, 59–78 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Wilmott, P., Howison, S., Dewynne, J.: The Mathematics of Financial Derivatives: A Student Introduction. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  14. Yong, J.: Introduction to mathematical finance. In: Yong, J., Cont, R. (eds.) Mathematical Finance-Theory and Applications. High Education Press, Beijing (2000)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the European Union under Grant Agreement number 304617 (FP7 Marie Curie Action Project Multi-ITN STRIKE - Novel Methods in Computational Finance) and the Bulgarian National Fund of Science under Project DID 02/37-2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miglena N. Koleva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Koleva, M.N., Vulkov, L.G. (2014). A Splitting Numerical Scheme for Non-linear Models of Mathematical Finance. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds) Large-Scale Scientific Computing. LSSC 2013. Lecture Notes in Computer Science(), vol 8353. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43880-0_69

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43880-0_69

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43879-4

  • Online ISBN: 978-3-662-43880-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics