Skip to main content

A Compressive Sensing Based Quantized Watermarking Scheme with Statistical Transparency Constraint

  • Conference paper
  • First Online:
Digital-Forensics and Watermarking (IWDW 2013)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8389))

Included in the following conference series:

Abstract

In multimedia protection processes, quantization based watermarking schemes are widely used. For these processes, the proposed watermarking solutions offer robust approaches for copyright protection. Unfortunately in key-less solutions, the additional hidden information (watermark) is, statistically detectable by unauthorized users, and thus they are correctly informed on the documents to be attacked or not. In this paper, we present a compressive sensing based watermarking solution able to mark digital pictures increasing statistical invisibility for attackers: the attacker will falsely conclude to a non-watermarked document with high probability. We discuss the way of using compressive sensing on the host signal for watermarking purpose. We describe a solution allowing to obtain a watermarking scheme based on compressive sensing with interesting properties for images protection processes. All the watermarking performances are discussed for three criteria robustness, statistical invisibility and capacity in order to look for the best trade-off. All the analysis are validated on digital image databases.

S. Hijazi performed the work while he was at the Laboratoire des Signaux et Systèmes in France.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the sequel, the symbol \(\tilde{}\) stands for sparse signals.

References

  1. Petitcolas, F.A.P., Anderson, R.J., Kuhn, M.G.: Information hiding-a survey. Proc. IEEE 87(7), 1062–1078 (1999)

    Article  Google Scholar 

  2. Cox, I.J., Miller, M.L., Bloom, J.A., Fridrich, J., Kalker, T.: Digital Watermarking and Steganography, 2nd edn. Morgan Kaufmann, San Francisco (2008)

    Google Scholar 

  3. Costa, M.H.M.: Writing on dirty paper. IEEE Trans. Inf. Theor, 29(3), 439–441 (1983)

    Article  MATH  Google Scholar 

  4. Le Guelvouit, G.: Trellis-coded quantization for public-key steganography. In: IEEE Conference on Acoustics, Speech and Signal Processing, March 2005 (2005)

    Google Scholar 

  5. Komaty, A., Delpha, C., Fraysse, A.: Floating costa scheme with fractal structure for information embedding. In: International Conference on Telecommunications (ICT 2012), Jounieh, Lebanon, April 2012. IEEE (2012)

    Google Scholar 

  6. Braci, S., Delpha, C., Boyer, R.: How quantization based schemes can be used in image steganographic context. Elsevier J. Signal Process. Image Commun. 26(8–9), 567–576 (2011)

    Article  Google Scholar 

  7. Benkara Mostefa, I., Braci, S., Delpha, C., Boyer, R., Khamadja, M.: Quantized based image watermarking in an independent domain. Elsevier J. Signal Process. Image Commun. 26(3), 194–204 (2011)

    Article  Google Scholar 

  8. Guillon, P., Furon, T., Duhamel, P.: Applied public-key steganography. In: Proceedings of SPIE, San Jose, CA (2002)

    Google Scholar 

  9. Starck, J.-L., Murtagh, F., Fadili, J.M.: Sparse Image and Signal Processing: Wavelets, Curvelets, Morphological Diversity. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  10. Furht, B., Kirovski, D.: Multimedia Security Handbook, 1st edn. CRC Press, Boca Raton (2005). (28 December 2004)

    Google Scholar 

  11. Langelaar, G.C., Setyawan, I., Lagendijk, R.L.: Watermarking digital image and video data: a state-of-the-art overview. IEEE Signal Process. Mag. 17(5), 20–46 (2000)

    Article  Google Scholar 

  12. Sheikh, M.A., Baraniuk, R.G.: Blind error-free detection of transform-domain watermarks. In: IEEE International Conference on Image Processing (ICIP), San Antonio, Texas, USA, September 2007 (2007)

    Google Scholar 

  13. Zhang, X., Qian, Z., Ren, Y., Feng, G.: Watermarking with flexible self-recovery quality based on compressive sensing and compositive reconstruction. IEEE Trans. Inf. Forensics Secur. 6(4), 1223–1232 (2011)

    Article  Google Scholar 

  14. Cover, T., Thomas, J.: Elements of Information Theory. Wiley, New York (1991)

    Book  MATH  Google Scholar 

  15. Cachin, C.: An information-theoretic model for steganography. In: Aucsmith, D. (ed.) IH 1998. LNCS, vol. 1525, pp. 306–318. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  16. Eggers, J.J., Bauml, R., Tzchoppe, R., Girod, B.: Scalar costa scheme for information embedding. IEEE Trans. Signal Process. 51(4), 1003–1019 (2003)

    Article  MathSciNet  Google Scholar 

  17. Braci, S., Delpha, C., Boyer, R., Le Guelvouit, G.: Informed stego-systems in active warden context: statistical undetectability and capacity. In: IEEE Proceedings of MMSP, October 2008 (2008)

    Google Scholar 

  18. Candes, E.J., Wakin, M.B., Romberg, J.: An introduction to compressive sampling. IEEE Signal Process. Mag. 25(2), 21–30 (2008)

    Article  Google Scholar 

  19. Candes, E.J., Romberg, J.: Sparsity and incoherence in compressive sampling. Inverse Prob. 23, 969–985 (2006)

    Article  MathSciNet  Google Scholar 

  20. Candes, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theor. 52(2), 489–509 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  21. Candes, E., Romberg, J.: \(\ell _1\)-Magic: Recovery of Sparse Signals via Convex Programming. California Institute of Technology, Pasadena (2005)

    Google Scholar 

  22. Portilla, J., Strela, V., Wainwright, M.J., Simoncelli, E.P.: Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Trans. Image Process. 12(11), 1338–1351 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. Romberg, J.: \(\ell _{1}\)-magic: code and papers. http://users.ece.gatech.edu/justin/l1magic/

  24. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 1–14 (2004)

    Article  Google Scholar 

  25. Braci, S., Boyer, R., Delpha, C.: On the tradeoff between security and robustness of the trellis coded quantization scheme. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude Delpha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Delpha, C., Hijazi, S., Boyer, R. (2014). A Compressive Sensing Based Quantized Watermarking Scheme with Statistical Transparency Constraint. In: Shi, Y., Kim, HJ., Pérez-González, F. (eds) Digital-Forensics and Watermarking. IWDW 2013. Lecture Notes in Computer Science(), vol 8389. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43886-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43886-2_29

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43885-5

  • Online ISBN: 978-3-662-43886-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics