Skip to main content

An Anomaly Detection Model Based on Cloud Model and Danger Theory

  • Conference paper
  • First Online:
Trustworthy Computing and Services (ISCTCS 2013)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 426))

Included in the following conference series:

  • 1283 Accesses

Abstract

In order to solve non-real time problem in traditional intrusion detection technologies, this paper proposes an anomaly detection model based on cloud model and danger theory. First using cloud model as a tool to evaluate the diversity factors between test data and the standard data set, then covert it into signal input of DCA to detect abnormality degree of system. Meanwhile, a dendritic cell algorithm based on data segmented detection is proposed in order to raise real-time response of the system. The paper use KDDCUP99 data sets to validate membership of normal data and detection rate of this model. Experimental results show that the model can effectively distinguish between normal data and abnormal data, and also improve the system anomaly detection capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Forrest, S., Perelson, A.S., Allen, L., et al.: Self-nonself discrimination in a computer. In: Proceedings of 1994 IEEE Computer Society Symposium on Research in Security and Privacy 1994, pp. 202–212. IEEE (1994)

    Google Scholar 

  2. Aickelin, U., Bentley, P.J., Cayzer, S., Kim, J., McLeod, J.: Danger theory: the link between AIS and IDS? In: Bentley, P.J., Hart, E., Timmis, J. (eds.) ICARIS 2003. LNCS, vol. 2787, pp. 147–155. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Greensmith, J., Aickelin, U., Cayzer, S.: Introducing dendritic cells as a novel immune-inspired algorithm for anomaly detection. In: Jacob, C., Pilat, M.L., Bentley, P.J., Timmis, J.I. (eds.) ICARIS 2005. LNCS, vol. 3627, pp. 153–167. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Weiwei, Z., Deyi, L.: Intrusion detection using cloud mode. Comput. Eng. Appl. 39(26), 158–160 (2003)

    Google Scholar 

  5. Lowry, C.A., Woodall, W.H., Champ, C.W., et al.: A multivariate exponentially weighted moving average control chart. Technometrics 34(1), 46–53 (1992)

    Article  MATH  Google Scholar 

  6. Yang, H., Dong, H., Liang, Y., et al.: Definition of danger signal in artificial immune system using cloud method. Comput. Eng. Appl. 42(10), 34–45 (2006)

    MATH  Google Scholar 

  7. Li, D., Meng, H.: Membership clouds and membership clouds generators. Comput. R&D 32(6), 15–20 (1995)

    Google Scholar 

  8. Gu, F., Greensmith, J., Aickelin, U.: Further exploration of the dendritic cell algorithm: antigen multiplier and time windows. In: Bentley, P.J., Lee, D., Jung, S. (eds.) ICARIS 2008. LNCS, vol. 5132, pp. 142–153. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Hettich, S., Bay, S.D.: KDD Cup 1999 Data. http://kdd.ics.uci.edu

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhao Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, W., Zhang, C., Zhang, Q. (2014). An Anomaly Detection Model Based on Cloud Model and Danger Theory. In: Yuan, Y., Wu, X., Lu, Y. (eds) Trustworthy Computing and Services. ISCTCS 2013. Communications in Computer and Information Science, vol 426. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43908-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43908-1_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43907-4

  • Online ISBN: 978-3-662-43908-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics