Skip to main content

Weak Parity

  • Conference paper
Automata, Languages, and Programming (ICALP 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8572))

Included in the following conference series:

  • 2660 Accesses

Abstract

We study the query complexity of Weak Parity: the problem of computing the parity of an n-bit input string, where one only has to succeed on a 1/2 + ε fraction of input strings, but must do so with high probability on those inputs where one does succeed. It is well-known that n randomized queries and n/2 quantum queries are needed to compute parity on all inputs. But surprisingly, we give a randomized algorithm for Weak Parity that makes only O(n/log0.246(1/ε)) queries, as well as a quantum algorithm that makes \(O(n/\sqrt{\log(1/\varepsilon)})\) queries. We also prove a lower bound of \(\Omega\left( n/\log\left( 1/\varepsilon\right) \right) \) in both cases, as well as lower bounds of Ω(logn) in the randomized case and \(\Omega(\sqrt{\log n})\) in the quantum case for any ε > 0. We show that improving our lower bounds is intimately related to two longstanding open problems about Boolean functions: the Sensitivity Conjecture, and the relationships between query complexity and polynomial degree.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambainis, A., Childs, A., Le Gall, F., Tani, S.: The quantum query complexity of certification. Quantum Information and Computation 10(3-4) arXiv:0903.1291 (2010)

    Google Scholar 

  2. Ambainis, A., Childs, A.M., Reichardt, B.W., Špalek, R., Zhang, S.: Any AND-OR formula of size N can be evaluated in time N 1/2 + o(1) on a quantum computer. In: Proc. IEEE FOCS (2007); quant-ph/0703015 and arXiv:0704.3628

    Google Scholar 

  3. Beals, R., Buhrman, H., Cleve, R., Mosca, M., de Wolf, R.: Quantum lower bounds by polynomials. J. ACM 48(4), 778–797 (2001); Earlier version in IEEE FOCS 1998, pp. 352–361 (1998) quant-ph/9802049

    Google Scholar 

  4. Bennett, C., Bernstein, E., Brassard, G., Vazirani, U.: Strengths and weaknesses of quantum computing. SIAM J. Comput. 26(5), 1510–1523 (1997); quant-ph/9701001

    Google Scholar 

  5. Buhrman, H., de Wolf, R.: Complexity measures and decision tree complexity: a survey. Theoretical Comput. Sci. 288, 21–43 (2002)

    Article  MATH  Google Scholar 

  6. Chung, F.R.K., Füredi, Z., Graham, R.L., Seymour, P.: On induced subgraphs of the cube. J. Comb. Theory Ser. A 49(1), 180–187 (1988)

    Article  MATH  Google Scholar 

  7. Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc. Roy. Soc. London A439, 553–558 (1992)

    Google Scholar 

  8. Farhi, E., Goldstone, J., Gutmann, S.: A quantum algorithm for the Hamiltonian NAND tree. Theory of Computing 4(1), 169–190 (2008); quant-ph/0702144

    Google Scholar 

  9. Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: A limit on the speed of quantum computation in determining parity. Phys. Rev. Lett. 81, 5442–5444 (1998); quant-ph/9802045

    Google Scholar 

  10. Gotsman, C., Linial, N.: The equivalence of two problems on the cube. J. Comb. Theory Ser. A 61(1), 142–146 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hatami, P., Kulkarni, R., Pankratov, D.: Variations on the sensitivity conjecture. Theory of Computing Library Graduate Surveys 4 (2011)

    Google Scholar 

  12. Midrijanis, G.: On randomized and quantum query complexities (2005) quant-ph/0501142

    Google Scholar 

  13. Nisan, N.: CREW PRAMs and decision trees. SIAM J. Comput. 20(6), 999–1007 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  14. Nisan, N., Szegedy, M.: On the degree of Boolean functions as real polynomials. Computational Complexity 4(4), 301–313 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  15. Saks, M., Wigderson, A.: Probabilistic Boolean decision trees and the complexity of evaluating game trees. In: Proc. IEEE FOCS, pp. 29–38 (1986)

    Google Scholar 

  16. Santha, M.: On the Monte-Carlo decision tree complexity of read-once formulae. Random Structures and Algorithms 6(1), 75–87 (1995)

    Article  MathSciNet  Google Scholar 

  17. Tal, A.: Properties and applications of Boolean function composition. In: Proc. Innovations in Theoretical Computer Science (ITCS), pp. 441–454 (2013); ECCC TR12-163

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aaronson, S., Ambainis, A., Balodis, K., Bavarian, M. (2014). Weak Parity. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds) Automata, Languages, and Programming. ICALP 2014. Lecture Notes in Computer Science, vol 8572. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43948-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43948-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43947-0

  • Online ISBN: 978-3-662-43948-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics