Skip to main content

One Tile to Rule Them All: Simulating Any Tile Assembly System with a Single Universal Tile

  • Conference paper
Automata, Languages, and Programming (ICALP 2014)

Abstract

In the classical model of tile self-assembly, unit square tiles translate in the plane and attach edgewise to form large crystalline structures. This model of self-assembly has been shown to be capable of asymptotically optimal assembly of arbitrary shapes and, via information-theoretic arguments, increasingly complex shapes necessarily require increasing numbers of distinct types of tiles.

We explore the possibility of complex and efficient assembly using systems consisting of a single tile. Our main result shows that any system of square tiles can be simulated using a system with a single tile that is permitted to flip and rotate. We also show that systems of single tiles restricted to translation only can simulate cellular automata for a limited number of steps given an appropriate seed assembly, and that any longer-running simulation must induce infinite assembly.

A full version of this paper can be found at  http://arxiv.org/abs/1212.4756

Research of Matthew J. Patitz supported in part by NSF grant CCF-1117672. Research of Robert Schweller supported in part by NSF grant CCF-1117672. Research of Andrew Winslow supported in part by NSF grant CDI-0941538. Research of Damien Woods Supported by NSF grants 0832824 & 1317694 (the Molecular Programming Project), CCF-1219274, and CCF-1162589.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adleman, L., Cheng, Q., Goel, A., Huang, M.-D.: Running time and program size for self-assembled squares. In: Proceedings of 33rd Annual Symposium on Theory of Computing, pp. 740–748 (2001)

    Google Scholar 

  2. Barish, R.D., Rothemund, P.W., Winfree, E.: Two computational primitives for algorithmic self-assembly: Copying and counting. Nano Letters 5(12), 2586–2592 (2005)

    Article  Google Scholar 

  3. Barish, R.D., Schulman, R., Rothemund, P.W., Winfree, E.: An information-bearing seed for nucleating algorithmic self-assembly. Proceedings of the National Academy of Sciences 106(15), 6054–6059 (2009)

    Article  Google Scholar 

  4. Cannon, S., Demaine, E.D., Demaine, M.L., Eisenstat, S., Patitz, M.J., Schweller, R.T., Summers, S.M., Winslow, A.: Two hands are better than one (up to constant factors): Self-assembly in the 2HAM vs. aTAM. In: STACS 2013. LIPIcs, vol. 20, pp. 172–184. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2013)

    Google Scholar 

  5. Chen, H.-L., Schulman, R., Goel, A., Winfree, E.: Reducing facet nucleation during algorithmic self-assembly. Nano Letters 7(9), 2913–2919 (2007)

    Article  Google Scholar 

  6. Cook, M., Fu, Y., Schweller, R.: Temperature 1 self-assembly: Deterministic assembly in 3D and probabilistic assembly in 2D. In: Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 570–589 (2011)

    Google Scholar 

  7. Doty, D., Lutz, J.H., Patitz, M.J., Schweller, R.T., Summers, S.M., Woods, D.: The tile assembly model is intrinsically universal. In: Proceedings of the 53rd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 302–310 (2012)

    Google Scholar 

  8. Fu, B., Patitz, M.J., Schweller, R., Sheline, R.: Self-assembly with geometric tiles. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp. 714–725. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Kari, L., Seki, S., Xu, Z.: Triangular and hexagonal tile self-assembly systems. In: Dinneen, M.J., Khoussainov, B., Nies, A. (eds.) Computation, Physics and Beyond. LNCS, vol. 7160, pp. 357–375. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. Meunier, P.-E., Patitz, M.J., Summers, S.M., Theyssier, G., Winslow, A., Woods, D.: Intrinsic universality in tile self-assembly requires cooperation. In: SODA 2014: Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms, Portland, Oregon, pp. 752–771. SIAM (2014)

    Google Scholar 

  11. Rothemund, P.W.K.: Design of DNA origami. In: ICCAD 2005: Proceedings of the 2005 IEEE/ACM International Conference on Computer-Aided Design, pp. 471–478. IEEE Computer Society, Washington, DC (2005)

    Chapter  Google Scholar 

  12. Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled squares (extended abstract). In: Proceedings of ACM Symposium on Theory of Computing (STOC), pp. 459–468 (2000)

    Google Scholar 

  13. Schulman, R., Winfree, E.: Synthesis of crystals with a programmable kinetic barrier to nucleation. Proceedings of the National Academy of Sciences 104(39), 15236–15241 (2007)

    Article  Google Scholar 

  14. Soloveichik, D., Winfree, E.: Complexity of self-assembled shapes. SIAM Journal on Computing 36(6), 1544–1569 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Winfree, E.: Algorithmic Self-Assembly of DNA. PhD thesis, California Institute of Technology (June 1998)

    Google Scholar 

  16. Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-dimensional DNA crystals. Nature 394(6693), 539–544 (1998)

    Article  Google Scholar 

  17. Woo, S., Rothemund, P.W.: Stacking bonds: Programming molecular recognition based on the geometry of DNA nanostructures. Nature Chemistry 3, 620–627 (2011)

    Article  Google Scholar 

  18. Woods, D.: Intrinsic universality and the computational power of self-assembly. In: MCU: Proceedings of Machines, Computations and Universality. Electronic Proceedings in Theoretical Computer Science, vol. 128, pp. 16–22 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Demaine, E.D. et al. (2014). One Tile to Rule Them All: Simulating Any Tile Assembly System with a Single Universal Tile. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds) Automata, Languages, and Programming. ICALP 2014. Lecture Notes in Computer Science, vol 8572. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43948-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43948-7_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43947-0

  • Online ISBN: 978-3-662-43948-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics