Skip to main content

A Faster Parameterized Algorithm for Treedepth

  • Conference paper
Automata, Languages, and Programming (ICALP 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8572))

Included in the following conference series:

Abstract

The width measure treedepth, also known as vertex ranking, centered coloring and elimination tree height, is a well-established notion which has recently seen a resurgence of interest. We present an algorithm which—given as input an n-vertex graph, a tree decomposition of width w, and an integer t—decides whether the input graph has treedepth at most t in time 2O(wt) ·n. We use this to construct further algorithms which do not require a tree decomposition as part of their input: A simple algorithm which decides treedepth in linear time for a fixed t, thus answering an open question posed by Ossona de Mendez and Nešetřil as to whether such an algorithm exists, a fast algorithm with running time \(2^{O(t^2)} \cdot n\) and an algorithm for chordal graphs with running time 2O(t logt)·n.

Research funded by DFG-Project RO 927/13-1 “Pragmatic Parameterized Algorithms”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bodlaender, H.L., Deogun, J.S., Jansen, K., Kloks, T., Kratsch, D., Müller, H., Tuza, Z.: Rankings of graphs. SIAM Journal of Discrete Mathematics 11(1), 168–181 (1998)

    Article  MATH  Google Scholar 

  2. Bodlaender, H.L., Drange, P.G., Dregi, M.S., Fomin, F.V., Lokshtanov, D., Pilipczuk, M.: A O(ck n) 5-approximation algorithm for treewidth. CoRR, abs/1304.6321 (2013)

    Google Scholar 

  3. Bodlaender, H.L., Gilbert, J.R., Hafsteinsson, H., Kloks, T.: Approximating treewidth, pathwidth, frontsize, and shortest elimination tree. Journal of Algorithms 18(2), 238–255 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bodlaender, H.L., Kratsch, D.: Personal communication (2014)

    Google Scholar 

  5. Courcelle, B.: The Monadic Second-Order Theory of Graphs. I. Recognizable Sets of Finite graphs. Information and Computation 85, 12–75 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  6. Deogun, J.S., Kloks, T., Kratsch, D., Müller, H.: On vertex ranking for permutations and other graphs. In: Enjalbert, P., Mayr, E.W., Wagner, K.W. (eds.) STACS 1994. LNCS, vol. 775, pp. 747–758. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  7. Dereniowski, D., Nadolski, A.: Vertex rankings of chordal graphs and weighted trees. Information Processing Letters 98, 96–100 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Diestel, R.: Graph Theory, 4th edn. Springer, Heidelberg (2010)

    Book  Google Scholar 

  9. Duff, I.S., Reid, J.K.: The multifrontal solution of indefinite sparse symmetric linear equations. ACM Transactions on Mathematical Software 9, 302–325 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fomin, F.V., Giannopoulou, A.C., Pilipczuk, M.: Computing tree-depth faster than 2n. In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 137–149. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Frick, M., Grohe, M.: The complexity of first-order and monadic second-order logic revisited. Annals of Pure and Applied Logic 130(1-3), 3–31 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Katchalski, M., McCuaig, W., Seager, S.: Ordered colourings. Discrete Mathematics 142(1-3), 141–154 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kaya, K., Uçar, B.: Constructing elimination trees for sparse unsymmetric matrices. SIAM Journal on Matrix Analysis and Applications 34(2), 345–354 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  14. Leiserson, C.E.: Area-efficient graph layouts (for VLSI). In: FOCS, pp. 270–281 (1980)

    Google Scholar 

  15. Liu, J.W.H.: The role of elimination trees in sparse factorization. SIAM Journal on Matrix Analysis and Applications 11(1), 134–172 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lokshtanov, D., Marx, D., Saurabh, S.: Known algorithms on graphs on bounded treewidth are probably optimal. In: Randall, D. (ed.) Proc. of 22nd SODA, pp. 777–789. SIAM (2011)

    Google Scholar 

  17. Nešetřil, J., Ossona de Mendez, P.: Grad and classes with bounded expansion I. Decompositions. European Journal of Combinatorics 29(3), 760–776 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Nešetřil, J., Ossona de Mendez, P.: Sparsity: Graphs, Structures, and Algorithms. Algorithms and Combinatorics, vol. 28. Springer, Heidelberg (2012)

    Google Scholar 

  19. Pothen, A.: The complexity of optimal elimination trees. Technical Report CS-88-13, Pennsylvannia State University (1988)

    Google Scholar 

  20. Pothen, A., Simon, H.D., Liou, K.-P.: Partitioning sparse matrices with eigenvectors of graphs. SIAM Journal of Matrix Analysis and Applications 11(3), 430–452 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  21. Robertson, N., Seymour, P.D.: Graph minors XIII. The disjoint paths problem. Journal of Combinatorial Theory, Series B 63, 65–110 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  22. Schäffer, A.A.: Optimal node ranking of trees in linear time. Information Processing Letters 33(2), 91–96 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  23. Spielman, D.A., Teng, S.-H.: Spectral partitioning works: Planar graphs and finite element meshes. In: FOCS, pp. 96–105 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Reidl, F., Rossmanith, P., Villaamil, F.S., Sikdar, S. (2014). A Faster Parameterized Algorithm for Treedepth. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds) Automata, Languages, and Programming. ICALP 2014. Lecture Notes in Computer Science, vol 8572. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43948-7_77

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43948-7_77

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43947-0

  • Online ISBN: 978-3-662-43948-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics