Abstract
We introduce an algorithm which solves mean payoff games in polynomial time on average, assuming the distribution of the games satisfies a flip invariance property on the set of actions associated with every state. The algorithm is a tropical analogue of the shadow-vertex simplex algorithm, which solves mean payoff games via linear feasibility problems over the tropical semiring (ℝ ∪ { − ∞ }, max , + ). The key ingredient in our approach is that the shadow-vertex pivoting rule can be transferred to tropical polyhedra, and that its computation reduces to optimal assignment problems through Plücker relations.
X. Allamigeon and S. Gaubert are partially supported by the PGMO program of EDF and Fondation Mathématique Jacques Hadamard. P. Benchimol is supported by a PhD fellowship of DGA and École Polytechnique.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Theoretical Computer Science 158(1-2), 343–359 (1996)
Ehrenfeucht, A., Mycielski, J.: Positional strategies for mean payoff games. International Journal of Game Theory 8(2), 109–113 (1979)
Gurvich, V.A., Karzanov, A.V., Khachivan, L.G.: Cyclic games and an algorithm to find minimax cycle means in directed graphs. USSR Computational Mathematics and Mathematical Physics 28(5), 85–91 (1988)
Jurdziński, M.: Deciding the winner in parity games is in UP ∩ co − UP. Information Processing Letters 68(3), 119–124 (1998)
Gaubert, S., Gunawardena, J.: The duality theorem for min-max functions. C. R. Acad. Sci. Paris 326(Série I), 43–48 (1998)
Vöge, J., Jurdziński, M.: A discrete strategy improvement algorithm for solving parity games. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 202–215. Springer, Heidelberg (2000)
Björklund, H., Vorobyov, S.: A combinatorial strongly subexponential strategy improvement algorithm for mean payoff games. Discrete Appl. Math. 155, 210–229 (2007)
Jurdziński, M., Paterson, M., Zwick, U.: A deterministic subexponential algorithm for solving parity games. SIAM Journal on Computing 38(4), 1519–1532 (2008)
Friedmann, O.: An exponential lower bound for the parity game strategy improvement algorithm as we know it. In: LICS, pp. 145–156. IEEE (August 2009)
Brim, L., Chaloupka, J., Doyen, L., Gentilini, R., Raskin, J.: Faster algorithms for mean-payoff games. Formal Methods in System Design 38(2), 97–118 (2011)
Akian, M., Gaubert, S., Guterman, A.: Tropical polyhedra are equivalent to mean payoff games. Int. J. Algebr. Comput. 22(1), 125001 (2012)
Allamigeon, X., Benchimol, P., Gaubert, S., Joswig, M.: Tropicalizing the simplex algorithm. E-print arXiv:1308.0454 (2013) (submitted)
Allamigeon, X., Benchimol, P., Gaubert, S., Joswig, M.: Combinatorial simplex algorithms can solve mean payoff games. E-print arXiv:1309.5925 (submitted, 2014)
Adler, I., Karp, R.M., Shamir, R.: A simplex variant solving an m ×d linear program in O( min (m 2,d 2)) expected number of pivot steps. Journal of Complexity 3(4), 372–387 (1987)
Roth, A., Balcan, M.F., Kalai, A., Mansour, Y.: On the equilibria of alternating move games. In: Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 805–816. SIAM, Philadelphia (2010)
Borgwardt, K.H.: The simplex method: a probabilistic analysis. Algorithms and Combinatorics, vol. 1. Springer (1987)
Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants, Resultants, and Multidimensional Determinants. Mathematics: Theory & Applications. Birkhäuser, Boston (1994)
Spielman, D.A., Teng, S.H.: Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time. J. ACM 51(3), 385–463 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Allamigeon, X., Benchimol, P., Gaubert, S. (2014). The Tropical Shadow-Vertex Algorithm Solves Mean Payoff Games in Polynomial Time on Average. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds) Automata, Languages, and Programming. ICALP 2014. Lecture Notes in Computer Science, vol 8572. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43948-7_8
Download citation
DOI: https://doi.org/10.1007/978-3-662-43948-7_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-43947-0
Online ISBN: 978-3-662-43948-7
eBook Packages: Computer ScienceComputer Science (R0)