Skip to main content

The Tropical Shadow-Vertex Algorithm Solves Mean Payoff Games in Polynomial Time on Average

  • Conference paper
Automata, Languages, and Programming (ICALP 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8572))

Included in the following conference series:

Abstract

We introduce an algorithm which solves mean payoff games in polynomial time on average, assuming the distribution of the games satisfies a flip invariance property on the set of actions associated with every state. The algorithm is a tropical analogue of the shadow-vertex simplex algorithm, which solves mean payoff games via linear feasibility problems over the tropical semiring (ℝ ∪ { − ∞ }, max , + ). The key ingredient in our approach is that the shadow-vertex pivoting rule can be transferred to tropical polyhedra, and that its computation reduces to optimal assignment problems through Plücker relations.

X. Allamigeon and S. Gaubert are partially supported by the PGMO program of EDF and Fondation Mathématique Jacques Hadamard. P. Benchimol is supported by a PhD fellowship of DGA and École Polytechnique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Theoretical Computer Science 158(1-2), 343–359 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ehrenfeucht, A., Mycielski, J.: Positional strategies for mean payoff games. International Journal of Game Theory 8(2), 109–113 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  3. Gurvich, V.A., Karzanov, A.V., Khachivan, L.G.: Cyclic games and an algorithm to find minimax cycle means in directed graphs. USSR Computational Mathematics and Mathematical Physics 28(5), 85–91 (1988)

    Article  MATH  Google Scholar 

  4. Jurdziński, M.: Deciding the winner in parity games is in UP ∩ co − UP. Information Processing Letters 68(3), 119–124 (1998)

    Article  MathSciNet  Google Scholar 

  5. Gaubert, S., Gunawardena, J.: The duality theorem for min-max functions. C. R. Acad. Sci. Paris 326(Série I), 43–48 (1998)

    Google Scholar 

  6. Vöge, J., Jurdziński, M.: A discrete strategy improvement algorithm for solving parity games. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 202–215. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  7. Björklund, H., Vorobyov, S.: A combinatorial strongly subexponential strategy improvement algorithm for mean payoff games. Discrete Appl. Math. 155, 210–229 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Jurdziński, M., Paterson, M., Zwick, U.: A deterministic subexponential algorithm for solving parity games. SIAM Journal on Computing 38(4), 1519–1532 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Friedmann, O.: An exponential lower bound for the parity game strategy improvement algorithm as we know it. In: LICS, pp. 145–156. IEEE (August 2009)

    Google Scholar 

  10. Brim, L., Chaloupka, J., Doyen, L., Gentilini, R., Raskin, J.: Faster algorithms for mean-payoff games. Formal Methods in System Design 38(2), 97–118 (2011)

    Article  MATH  Google Scholar 

  11. Akian, M., Gaubert, S., Guterman, A.: Tropical polyhedra are equivalent to mean payoff games. Int. J. Algebr. Comput. 22(1), 125001 (2012)

    Article  MathSciNet  Google Scholar 

  12. Allamigeon, X., Benchimol, P., Gaubert, S., Joswig, M.: Tropicalizing the simplex algorithm. E-print arXiv:1308.0454 (2013) (submitted)

    Google Scholar 

  13. Allamigeon, X., Benchimol, P., Gaubert, S., Joswig, M.: Combinatorial simplex algorithms can solve mean payoff games. E-print arXiv:1309.5925 (submitted, 2014)

    Google Scholar 

  14. Adler, I., Karp, R.M., Shamir, R.: A simplex variant solving an m ×d linear program in O( min (m 2,d 2)) expected number of pivot steps. Journal of Complexity 3(4), 372–387 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  15. Roth, A., Balcan, M.F., Kalai, A., Mansour, Y.: On the equilibria of alternating move games. In: Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 805–816. SIAM, Philadelphia (2010)

    Chapter  Google Scholar 

  16. Borgwardt, K.H.: The simplex method: a probabilistic analysis. Algorithms and Combinatorics, vol. 1. Springer (1987)

    Google Scholar 

  17. Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants, Resultants, and Multidimensional Determinants. Mathematics: Theory & Applications. Birkhäuser, Boston (1994)

    Book  Google Scholar 

  18. Spielman, D.A., Teng, S.H.: Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time. J. ACM 51(3), 385–463 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Allamigeon, X., Benchimol, P., Gaubert, S. (2014). The Tropical Shadow-Vertex Algorithm Solves Mean Payoff Games in Polynomial Time on Average. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds) Automata, Languages, and Programming. ICALP 2014. Lecture Notes in Computer Science, vol 8572. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43948-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43948-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43947-0

  • Online ISBN: 978-3-662-43948-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics