Skip to main content

The Mondshein Sequence

  • Conference paper
Automata, Languages, and Programming (ICALP 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8572))

Included in the following conference series:

Abstract

Canonical orderings [STOC’88, FOCS’92] have been used as a key tool in graph drawing, graph encoding and visibility representations for the last decades. We study a far-reaching generalization of canonical orderings to non-planar graphs that was published by Lee Mondshein in a PhD-thesis at M.I.T. as early as 1971.

Mondshein proposed to order the vertices of a graph in a sequence such that, for any i, the vertices from 1 to i induce essentially a 2-connected graph while the remaining vertices from i + 1 to n induce a connected graph. Mondshein’s sequence generalizes canonical orderings and became later and independently known under the name non-separating ear decomposition. Currently, the best known algorithm for computing this sequence achieves a running time of O(nm); the main open problem in Mondshein’s and follow-up work is to improve this running time to a subquadratic time.

In this paper, we present the first algorithm that computes a Mondshein sequence in time and space O(m), improving the previous best running time by a factor of n. In addition, we illustrate the impact of this result by deducing linear-time algorithms for several other problems, for which the previous best running times have been quadratic.

In particular, we show how to compute three independent spanning trees in a 3-connected graph in linear time, improving a result of Cheriyan and Maheshwari [J. Algorithms 9(4)]. Secondly, we improve the preprocessing time for the output-sensitive data structure by Di Battista, Tamassia and Vismara [Algorithmica 23(4)] that reports three internally disjoint paths between any given vertex pair from O(n 2) to O(m). Thirdly, we improve the computation of 3-partitioning of a 3-connected graph to linear time. Finally, we show how a very simple linear-time planarity test can be derived once a Mondshein sequence is computed.

This research was partly done at Max Planck Institute for Informatics, Saarbrücken.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Badent, M., Brandes, U., Cornelsen, S.: More canonical ordering. J. Graph Algorithms Appl. 15(1), 97–126 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barnette, D.W., Grünbaum, B.: On Steinitz’s theorem concerning convex 3-polytopes and on some properties of planar graphs. In: Many Facets of Graph Theory, pp. 27–40 (1969)

    Google Scholar 

  3. Brandes, U.: Eager st-ordering. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 247–256. Springer, Heidelberg (2002)

    Google Scholar 

  4. Cheriyan, J., Maheshwari, S.N.: Finding nonseparating induced cycles and independent spanning trees in 3-connected graphs. J. Algorithms 9(4), 507–537 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  5. Curran, S., Lee, O., Yu, X.: Finding four independent trees. SIAM Journal on Computing 35(5), 1023–1058 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. de Fraysseix, H., Pach, J., Pollack, R.: Small sets supporting fary embeddings of planar graphs. In: Proceedings of the 20th Annual ACM Symposium on Theory of Computing (STOC 1988), pp. 426–433 (1988)

    Google Scholar 

  7. de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10(1), 41–51 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  8. Di Battista, G., Tamassia, R., Vismara, L.: Output-sensitive reporting of disjoint paths. Algorithmica 23(4), 302–340 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hopcroft, J.E., Tarjan, R.E.: Dividing a graph into triconnected components. SIAM J. Comput. 2(3), 135–158 (1973)

    Article  MathSciNet  Google Scholar 

  10. Huck, A.: Independent trees in planar graphs. Graphs and Combinatorics 15(1), 29–77 (1999)

    MATH  MathSciNet  Google Scholar 

  11. Itai, A., Rodeh, M.: The multi-tree approach to reliability in distributed networks. Information and Computation 79, 43–59 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kant, G.: Drawing planar graphs using the lmc-ordering. In: Proceedings of the 33th Annual Symposium on Foundations of Computer Science (FOCS 1992), pp. 101–110 (1992)

    Google Scholar 

  13. Kant, G.: Drawing planar graphs using the canonical ordering. Algorithmica 16(1), 4–32 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lovász, L.: Computing ears and branchings in parallel. In: Proceedings of the 26th Annual Symposium on Foundations of Computer Science (FOCS 1985), pp. 464–467 (1985)

    Google Scholar 

  15. Mondshein, L.F.: Combinatorial Ordering and the Geometric Embedding of Graphs. PhD thesis, M.I.T. Lincoln Laboratory / Harvard University (1971), Technical Report, available at http://www.dtic.mil/cgi-bin/GetTRDoc?AD=AD0732882

  16. Mutzel, P.: The SPQR-tree data structure in graph drawing. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 34–46. Springer, Heidelberg (2003)

    Google Scholar 

  17. Schmidt, J.M.: Contractions, removals and certifying 3-connectivity in linear time. SIAM Journal on Computing 42(2), 494–535 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  18. Suzuki, H., Takahashi, N., Nishizek, T., Miyano, H., Ueno, S.: An algorithm for tripartitioning 3-connected graphs. Information Processing Society of Japan (IPSJ) 31(5), 584–592 (1990) (in Japanese).

    Google Scholar 

  19. Thomassen, C.: Kuratowski’s theorem. J. Graph Theory 5(3), 225–241 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  20. Tutte, W.T.: How to draw a graph. Proc. Lond. Math. Soc. 13, 743–767 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  21. Tutte, W.T.: Connectivity in graphs. In: Mathematical Expositions, vo. 15, University of Toronto Press (1966)

    Google Scholar 

  22. Wada, K., Kawaguchi, K.: Efficient algorithms for tripartitioning triconnected graphs and 3-edge-connected graphs. In: van Leeuwen, J. (ed.) WG 1993. LNCS, vol. 790, pp. 132–143. Springer, Heidelberg (1994)

    Google Scholar 

  23. Whitney, H.: Non-separable and planar graphs. Trans. Amer. Math. Soc. 34(1), 339–362 (1932)

    Article  MathSciNet  Google Scholar 

  24. Zehavi, A., Itai, A.: Three tree-paths. J. Graph Theory 13(2), 175–188 (1989)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schmidt, J.M. (2014). The Mondshein Sequence. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds) Automata, Languages, and Programming. ICALP 2014. Lecture Notes in Computer Science, vol 8572. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43948-7_80

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43948-7_80

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43947-0

  • Online ISBN: 978-3-662-43948-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics