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Abstract

We provide a relatively simple proof that the expected gap between the maximum load and the average load in
the two choice process is bounded by (1 + o(1)) log logn, irrespective of the number of balls thrown. The theorem
was first proven by Berenbrink et al. in [2]. Their proof uses heavy machinery from Markov-Chain theory and some
of the calculations are done using computers. In this manuscript we provide a significantly simpler proof that is not
aided by computers and is self contained. The simplification comes at a cost of weaker bounds on the low order terms
and a weaker tail bound for the probability of deviating from the expectation.

1 A Bit of History
In the Greedy[d] process (sometimes called the d-choice process), balls are placed sequentially into [n] bins with the
following rule: Each ball is placed by uniformly and independently sampling d bins and assigning the ball to the least
loaded of the d bins. In other words, the probability a ball is placed in one of the i heaviest bins (at the time when it
is placed) is exactly1 (i/n)d. We remark that using this characterization there is no need to assume that d is a natural
number (though the process is algorithmically much simpler when d is an integer). The main point is that whenever
d > 1 the process is biased: the lighter bins have a higher chance of getting a ball. In this paper we are interested in
the gap of the allocation, which is the difference between the number of balls in the heaviest bin, and the average. The
case d = 1, when balls are placed uniformly at random in the bins, is well understood. In particular when n balls are
thrown the bin with the largest number of balls will have Θ(log n/ log log n) balls w.h.p. Since the average is 1 this is
also the gap. If m >> n balls are thrown the heaviest bin will have m/n+ Θ(

√
m log n/n) balls w.h.p. [8].

In an influential paper Azar et al. [1] showed that when n balls are thrown and d > 1 the gap is log log n/ log d+
O(1) w.h.p. The case d = 2 is implicitly shown in Karp et al. [4]. The proof by Azar et al. uses a simple but clever
induction; in our proof here we take the same approach. Bounding the number of balls by n (or by O(n)) turns out
to be a crucial assumption: the proof in [1] breaks down once the number of balls is super-linear in the number of
bins. Two other approaches to prove this result, namely, using differential equations or witness trees, also fail when
the number of balls is large. See for example the survey [5]. A breakthrough was achieved by Berenbrink et al.
in [2]. They proved that the same bound on the gap holds for any, arbitrarily large number of balls. Contrast this
with the one choice case in which the gap diverges with the number of balls. At a (very) high level their approach
was the following: first they show that the gap after m balls are thrown is distributed similarly to the gap after only
poly(n) balls are thrown. This is done by bounding the mixing time of the underlying Markov Chain. The second
step is to extend the induction technique of [1] to the case of poly(n) balls. This turns out to be a major technical
challenge which involves four inductive invariants and computer aided calculations. As such, finding a simpler proof
remained an interesting open problem. In this paper we provide such a proof. The simplification comes at a minor
cost: we get weaker tail bounds and higher lower order terms. While [2] show that for any c, the gap is at most
log log n + γ(c) with probability (1 − 1

nc ) for a constant γ(c) depending on c alone, our proof shows that the gap is
log log n+ γ′(c) · log log log n with probability (1− 1

(log logn)c ) for a constant γ′(c) depending on c alone..

∗Microsoft Research, kunal@microsoft.com
†Microsoft Research, uwieder@microsoft.com
1Assume for simplicity and w.l.o.g that ties are broken according to some fixed ordering of the bins.
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2 The Proof
We define the load vector Xt to be an n dimensional vector where Xt

i is the difference between the load of the i’th
bin after tn balls are thrown and the average t, (so that a load of a bin could be negative and

∑
Xi = 0). We also

assume without loss of generality that the vector is sorted so that Xt
1 ≥ Xt

2 ≥ ... ≥ Xt
n. We will consider the Markov

chain defined by Xt, so one step of the chain consists of throwing n balls according to the d-choice scheme and then
sorting and normalizing the load vector.

The main tool we use is the following Theorem proven in [7] using a potential function argument. For the reader’s
convenience we include a proof in Section A.

Theorem 2.1. There exists universal constants a and b which may depend on d but not on n or t, such that,
E[
∑
i exp(a|Xt

i |)] ≤ bn.

Let Gt
def
= Xt

1 denote the gap between maximum and average when sampling from Xt. Theorem 2.1 immediately
implies the following:

Lemma 2.2. For any t, any c ≥ 0, Pr[Gt ≥ (c log n)/a] ≤ bn/nc. Thus for every c there is a γ = γ(c) such that
Pr[Gt ≥ γ log n] ≤ n−c.

Armed with this result, the crucial lemma, that we present next, says that if the gap at time t is L, then after
throwing another nL balls, the gap becomes log log n + O(logL) with probability close to 1. A bit more formally,
if L > logd log n + O(log log log n), the tail probabilities Pr[Gt ≥ L] and Pr[Gt+L ≥ logd log n + O(logL)]
differ by at most an additive 1

poly(L) + 1
poly(n) . Then using Lemma 2.2, we will infer a tail bound for Pr[G ≥

logd log n+O(log log log n)].

Lemma 2.3. For any c > 0 there is a γ = γ(c), independent of n, so that for any t, `, L such that ` ≤ L ≤ n
1
4 ,

Pr[Gt+L ≥ logd log n+`+γ] ≤ Pr[Gt ≥ L]+8bL3/ exp(a`)+n−c, where a, b are the constants from Theorem 2.1.

The lemma is relatively straightforward to prove using the layered induction technique, except that we need a
non-trivial “base case” to start the layered induction. Theorem 2.1 provides us with such a base case, for bins with `
more balls than average in Xt+L. For a specific ball to increase the number of balls in a bin from i to i + 1, it must
pick two bins that already contain at least i balls. If the fraction of bins with at least i balls when this ball is placed is
at most βi, then this probability would be β2

i . While this βi value is a function of time, it is monotonically increasing
and using the final βi value would give us an upper bound on the probability of increase. We get such a bound for the
base case using our potential function bound, and use induction and Chernoff bounds to conclude that the gap is likely
to be small. We next give the details of such an argument.

Proof. We sample an allocation Xt and let Gt be its gap. Now take an additional L steps of the Markov chain to
obtain Xt+L: in other words, we throw an additional nL balls using the d-choice process. For brevity, we will use
X,G,X ′, G′ to denote Xt, Gt, Xt+L, Gt+L respectively. We condition on G < L and we prove the bound for G′.
Let L′ = logd log n+ `+ γ. Observe that:

Pr[G′ ≥ L′] ≤ Pr[G′ ≥ L′ | G < L] + Pr[G ≥ L] (1)

It thus suffices to prove that Pr[G′ ≥ L′ | G < L] ≤ 8bL3/ exp(a`) + n−c. We do this using a layered induction
similar to the one in [1].

Let νi be the fraction of bins with load at least i in X ′, we will define a series of numbers βi such that νi ≤ βi with
high probability. For convenience, let the balls existing in X be black, and let the new nL balls thrown be white. We
define the height of a ball to be the load of the bin in which it was placed relative to X ′. Let µi be the number of balls
(out of the nL white balls thrown) that fall at height greater than i in X ′. Note that since a total of nL white balls are
thrown, the average increases by L, so in order for a black ball to be in height i in X ′ it had to had been placed in a
bin of load L + i in X . The main observation is that conditioned on G < L, no black ball is in a bin with load more
than L in X and therefore all black balls are below the average of X ′. So, for any i ≥ 0, it must be that νin ≤ µi.
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Figure 1: Black balls are in X , nL white balls are thrown to obtain X ′

By Theorem 2.1 and Markov’s inequality, Pr[ν` ≥ 1
8L3/(d−1) ] ≤ 8bL3/(d−1)

exp(a`) , so we can set β` = 1
8L3/(d−1) as the

base of the layered induction. By the standard layered induction argument we have that w.h.p νi+1 ≤ µi+1/n ≤ 2Lβdi
and so we set βi+1 = 2Lβdi . Since βi < 1

8L3/(d−1) for i ≥ `, the multiplicative term of L has little impact, and we
can derive the claimed bound. For completeness, we give details below. For ease of notation we assume d = 2, the
generalization for any d > 1 is trivial.

Let iL = `, iH = iL + log log n and c′ = 3(c + 1). Let βiL = 1
8L3 and βi+1 = max(2Lβ2

i , 2c
′ log n/n) for

i = iL, . . . , iH − 1. It is easy to check that βiH = 2c′ log n/n. Indeed the recurrence

log βiL = −3 log(2L),

log βi+1 = 2 log βi + log(2L)

solves to log βiL+k = log(2L)(−3·2k+(2k−1)), which implies the claim. The inductive step in the layered induction
is the following:

Lemma 2.4. For any i ∈ [iL, iH − 1], we have Pr[νi+i > βi+1 | νi ≤ βi] ≤ 1
nc+1 .

Proof. For a ball to fall at height at least i+ 1, it should pick two bins that have load at least i when the ball is placed,
and hence at least as much in X ′. Thus the probability that a ball falls at height at least i+ 1 is at most ν2

i ≤ β2
i under

our conditioning. Since we place nL balls, the expected number of balls that fall at height at least i+ 1 is bounded by
nLβ2

i ≤ nβi+1/2. Finally, since this number is at least c′ log n, Chernoff bounds imply that the probability that we
get twice the expectation is at most exp(−c′ log n/3) ≤ 1/nc+1. The claim follows.

It follows that Pr[νiH > βiH | G < L] ≤ 8bL3/ exp(a`) + iH/n
c+1. Now we condition on νiH ≤ βiH , and let H

be the set of bins of height at least iH inX ′. Once a bin reaches this height, an additional ball falls in it with probability
at most (2βiHn + 1)/n2. Thus the expected number of balls falling in such a bin is O(L log n/n). The probability

3



that any bin in H gets 2c balls after reaching height iH is then at most O(log n exp(−Ω(c2n/3L log n)) ≤ 1/nc+1

for large enough n. The claim follows.

This lemma allows us to bound Pr[Gt+L ≥ log log n + O(logL)] by Pr[Gt ≥ L] + 1
poly(L) . Since Pr[Gt ≥

O(log n)] is small, we can conclude that Pr[Gt+O(logn) ≥ O(log log n)] is small. Another application of the lemma
then gives that Pr[Gt+O(logn)+O(log logn) ≥ log logn + O(log log log n)] is small. We formalize these corollaries
next.

Corollary 2.5. There is a universal constant γ such that for any k ≥ 0, t ≥ (12 log n)/a, Pr[Gt ≥ (5 + 10
a ) ·

log log n+ k + γ] ≤ 1
n10 + exp(−ak)

log4 n
.

Proof. Set L = 12 log n/a, and use Lemma 2.2 to bound Pr[Gt−L ≥ L]. Set ` = k + log(8bL3 log4 n)/a to derive
the result.

Corollary 2.6. There are universal constants γ, α such that for any k ≥ 0, t ≥ ω(log n), Pr[Gt ≥ log log n +

α log log log n+ k + γ] ≤ 1
n10 + 1

log4 n
+ exp(−ak)

(log logn)4 .

Proof. SetL = log(8b( 12 logn
a )3 log4 n)/a = 7 log logn

a +Oa,b(1) and use Corollary 2.5 with k=0 to bound Pr[Gt−L ≥
L]. Set ` = k + log(8bL3(log log n)4)/a to derive the result.

Setting k = 0 in Corollary 2.6, we conclude that

Corollary 2.7. There are universal constants γ, α such that for t ≥ ω(log n), Pr[Gt ≥ log log n+ α log log log n+
γ] ≤ 2

(log logn)4 .

Using the above results, we can also conclude

Corollary 2.8. There are universal constants γ, α such that for t ≥ ω(log n) E[Gt] ≤ log logn+α log log log n+ γ.

Proof. Let `1 = log log n + α log log log n + γ1 for α, γ1 from Corollary 2.6, and let `2 = (5 + 10
a ) · log log n + γ2

for γ2 from Corollary 2.5. Finally, let `3 = 12 log n/a. We bound

E[Gt] ≤ `1 +

∫ `2

`1

Pr[Gt ≥ x] dx+

∫ `3

`2

Pr[Gt ≥ x] dx+

∫ ∞
`3

Pr[Gt ≥ x] dx

Each of the three integrals are bounded by constants, using Corollaries 2.6 and 2.5 and Lemma 2.2 respectively. The
claim follows.

The following lemma states that the lower bound condition on t is unnecessary.

Lemma 2.9. For t ≥ t′, Gt′ is stochastically dominated by Gt. Thus E[Gt
′
] ≤ E[Gt] and for every k, Pr[Gt

′ ≥ k] ≤
Pr[Gt ≥ k].

Proof sketch. We use the notion of majorization, which is a variant of stochastic dominance. See for example [1] for
definitions. Observe that trivially X0 is majorized by Xt−t′ . Now throw nt′ balls using the standard coupling and get
that Xt′ is majorized by Xt. The definition of majorization implies the stochastic dominance of the maximum and the
bounds on the expectation and the tail follow.

3 Extensions
The technique we use naturally extends to other settings.
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3.1 The Weighted Case
Previously we assumed all balls are of unit weight. For the case of varying weights we use the model proposed in [9]
and also used in [7]. Every ball comes with a weightW independently sampled from a weight distributionW . Without
loss of generality we assume E[W] = 1. The weight of a bin is the sum of weights of balls assigned to it. The gap is
naturally defined as the difference between the weight of the heaviest bin and the average bin. In [9] it is shown that
ifW has a bounded second moment and satisfies some additional mild smoothness condition, then the expected gap
does not depend on the number of balls. The paper does not provide any explicit bounds on the gap though. In [7] it is
shown that ifW has a finite exponential generating function the gap is bounded by O(log n). For some distributions,
such as the exponential distribution, this bound is tight. Here we can show that ifW is very concentrated (for instance
it is bounded) then better bounds can be proved.

Consider for example the case where the size of each ball is drawn uniformly from {1, 2}. Previous techniques
such as [2] fail to prove an O(log log n) bound in this case, and the best bound prior to this work is the O(log n) via
the potential function argument of [7]. The fact that Theorem 2.1 holds means that the technique of this paper can
be applied. Moreover, the layered induction still works if we go up in steps of size two instead of one. This shows a
bound of 2 logd log n+O(1) for this distribution.

More generally, for a weight distribution W with a bounded exponential moment generating function, let Ms be
the smallest value such that Pr[W ≥ Ms] ≤ 1

s(log logn)5 . Then a proof analogous to Lemma 2.3 shows that the

gap is O(log log n) +
∑iH
i=iL

Mβin. If Mn is ω(log log n), then this is O(Mn), which is tight up to constants. We
note however that this proof leaves a “hole”: since majorization does not necessarily hold in the weighted case, our
approach proves the bound on the gap when Ω(n log n) balls are thrown.

3.2 The Left[d] Scheme
Next we sketch how this approach also proves a tight bound for Vöcking’s Left[d] process [10]. The result had been
shown in [2], though there they had to redo large sections of the proof (and the most technical at that), while here we
only require minor changes. Recall that in Left[d] the bins are partitioned into d sets of n/d bins each (we assume n
is divisible by d). When placing a ball, one bin is sampled uniformly from each set and the ball is placed in the least
loaded of the d bins. The surprising feature of this process is that ties are broken according to a fixed ordering of the
sets (we think of the sets as ordered from left to right and ties are broken ’to the left’, hence the name of the scheme).
The surprising result is that the gap now drops from log logn

log d to log logn
d lnφd

where φd = limk→∞(Fd(k))
1
k ∈ [1.61, 2) is

the base of the order d Fibonacci number.
The key ingredient in the proof is Theorem 2.1 from [7]. The exponential potential function is Schur-Convex and

therefore the theorem holds for any process which is majorized by the Greedy[d] process. It is indeed the case that
Vöcking’s Left[d] process [10] is majorized by Greedy[d] (see the proof in [2]). All that remains is to prove the analog
of Lemma 2.3. For this we follow the analysis of Mitzenmacher and Vöcking in [6]. Let Xjd+k be the number of bins
of load at least j from the k’th set, and set xi = Xi/n. It is easy to verify the recursive equation

E[xi|x<i] ≤ dd
i−1∏
j=i−d

xj

From here the proof is similar to that of Lemma 2.3.

4 Discussion
The theorem in [2] states that for every c there is a γ = γ(c) so that Pr[G > log log n + γ] ≤ n−c. The reason our
techniques do not show such a sharp bound is that we do not obtain a small enough tail for the base case of the layered
induction, i.e. on Pr[ν` ≤ β`]. The reason is that the exponential potential function in Theorem 2.1 is not concentrated
enough to yield such a bound. This presents a substantial obstacle, it seems that a different technique is needed in
order to recover the results in [2] at full strength.
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An interesting corollary from Theorem 2.1 is that the Markov chain Xt has a stationary distribution and that the
bounds we prove hold also for the stationary distribution itself. In that sense, while in [2] the mixing of the chain was
used to move the interesting events to be closer to the ”present”, in our technique we allow ourselves to look directly
at the distant ”future”. When balls are unweighted a simple majorization based argument shows that moving closer
in time can only improve the bounds on the gap (this is Lemma 2.9). Unfortunately, a similar Lemma does not hold
when balls are weighted (see [3]), so we need to be specify the time periods we look at. Indeed, while our results hold
when considering a large number of balls, we have a ’hole’ for a number of balls that is smaller than n log n.
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A Potential Function
In order to make the writeup self contained we next provide a proof of Theorem 2.1.

It would be convenient to define the load vector x(t) to the sorted vector of gaps after t balls are thrown, where t is
not necessarily a multiple of n, as in the previous section. In other words, x(t)i is the difference between the number
of balls in the ith most loaded bin and the average t/n. Note that in the notation of the previous section, Xt is x(nt).
The load of a bin now is not necessarily an integer. We define pi to be the probability the i’th loaded bin receives a ball,
so pi =

(
i
n

)d − ( i−1
n

)d
. Recall that we also have a weight distributionW . The Markov chain is thus the following:

• sample j ∈p [n], i.e. pick j with probability pj .

• sample W ∈ W

6



• set yi = x(t)i +W − W
n for i = j and zi = x(t)i − W

n for i 6= j

• obtain x(t+ 1) by sorting y

We make the following two observations which hold whenever d > 1. It turns out to be all we need:

pi ≤ pi+1 for i ∈ [n− 1] (2)

For some ε > 0 it holds that ∑
i≥ 3n

4

pi ≥ 1
4 + ε and

∑
i≤n4

pi ≤ 1
4 − ε (3)

For the distribution W , we assume that there is a λ > 0 such that the moment generating function M [λ] =
E[eλW ] <∞. Further, without loss of generality, E[W ] = 1. Note that

M ′′(z) = E[W 2ezW ] ≤
√
E[W 4]E[e2zW ].

The above assumption implies that there is an S ≥ 1 such that for every |z| < λ/2 it holds that M ′′(z) < 2S. For
simplicity, we assume throughout that n is bounded below by a large enough constant.

Let α = min( ε
6S , λ/2). We can assume that ε ≤ 1/4 and thus that α ≤ 1/6. Define the following potential

functions

Φ(x(t)) :=

n∑
i=1

exp(αx(t)i)

Ψ(x(t)) :=

n∑
i=1

exp(−αx(t)i)

Γ(x(t)) := Φ(x(t)) + Ψ(x(t))

We start by calculating the expected change of Φ and Ψ individually. For ease of notation we write Φ or Φ(t) when
the context clear.

Lemma A.1. For Φ defined as above,

E[Φ(t+ 1)− Φ(t) | x(t)] ≤
n∑
i=1

(
pi(α+ Sα2)− (αn − S

α2

n2 )
)
eαxi . (4)

Proof. Let ∆i denote the change in Φi = exp(αxi), i.e. ∆i = exp(αyi)− exp(αxi), where yi = xi +W − W
n with

probability pi, and yi = xi − W
n otherwise. In the first case, when the ball is placed in bin i, the expected change

(taken over randomness in W ) ∆i is

E[eα(xi+W−Wn )]− eαxi = eαxi(M(α(1− 1
n ))− 1)

= eαxi(M(0) +M ′(0)α(1− 1
n ) +M ′′(ζ)(α(1− 1

n ))2/2− 1)

for some ζ ∈ [0, α(1 − 1
n )]. By the assumption on W and α, M ′′(ζ) ≤ 2S. Moreover, M(0) = 1 and M ′(0) =

E[W ] = 1. Thus the above expression can be bounded from above by

eαxi(α(1− 1
n ) + Sα2).

Similarly, in the case that the ball goes to a bin other than i, the expected value of ∆i can be bounded by (−αn +

S α
2

n2 )eαxi . Thus

E[∆i] ≤ pi(α(1− 1
n ) + Sα2)eαxi − (1− pi)(αn − S

α2

n2 )eαxi ≤
(
pi(α+ Sα2)− (αn − S

α2

n2 )
)
eαxi .

The claim follows.
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Corollary A.2.

E[Φ(t+ 1)− Φ(t) | x(t)] ≤ 2α

n
Φ(t) (5)

Proof. Note that Sα ≤ 1
6 < 1 so that

E[Φ(t+ 1)− Φ(t) | x(t)] ≤
n∑
i=1

2αpie
αxi . (6)

The claim follows by observing that pi’s are increasing and xi’s are decreasing, so that the expression is at most what
it would be if the pi’s were all equal.

Similar arguments show that

Lemma A.3. Let Ψ be defined as above. Then

E[Ψ(t+ 1)−Ψ(t) | x(t)] ≤
n∑
i=1

(
pi(−α+ Sα2) + (αn + S α

2

n2 )
)
e−αxi . (7)

Corollary A.4.

E[Ψ(t+ 1)−Ψ(t) | x(t)] ≤ 2α

n
Ψ(t) (8)

Proof. This follows immediately as pi > 0 and Sα < 1
6 .

We start by showing that for reasonably balanced configurations, both Φ and Ψ have the right decrease in expecta-
tion. More precisely, if x 3n

4
≤ 0, then Φ decreases in expectation, and if xn

4
≥ 0, then Ψ decreases in expectation.

Lemma A.5. Let Φ be defined as above. If x 3n
4

(t) ≤ 0, then E[Φ(t+ 1) | x(t)] ≤ (1− αε
n )Φ(t) + 1.

Proof. We upper bound
∑n
i=1 pi(α + Sα2)eαxi for a fixed Φ(x), for x which is non increasing with

∑
i xi = 0. We

first write

n∑
i=1

pi(α+ Sα2)eαxi ≤
∑
i< 3n

4

pi(α+ Sα2)eαxi +
∑
i≥ 3n

4

pi(α+ Sα2)e0

≤
∑
i< 3n

4

pi(α+ Sα2)eαxi + 1 (9)

since α+ Sα2 ≤ 6ε+ε2

36S ≤ 1 by our assumptions that ε ≤ 1 and S ≥ 1.
Now set yi := eαxi . The first term above is no larger than the maximum value of

(α+ Sα2)
∑
i< 3n

4

piyi

subject to∑
i< 3n

4

yi ≤ Φ

yi−1 ≥ yi ∀ 1 < i < 3n
4 .

Since p is non-decreasing and y is non-increasing, the maximum is achieved when yi = 4Φ
3n for each i, and is at most

(α+ Sα2)( 3
4 − ε)

4Φ
3n .

8



We can now plug this bound in (9), and substituting in (4) we upper-bound the expected change in Φ.

E [Φ(t+ 1)− Φ(t) | x(t)] ≤ (α+ Sα2)(
3

4
− ε) 4Φ

3n −
(
α

n
− Sα

2

n2

)
Φ + 1

≤ αΦ

n

(
(1 + Sα)(1− 4ε

3
)− 1 + S

α

n

)
+ 1

Assuming Sα ≤ ε/6 we have

≤ α

n
Φ
(
ε
6 −

4ε
3 + ε

6n

)
+ 1

≤ −αε
n

Φ + 1

The claim follows.

Lemma A.6. Let Ψ be defined as above. If xn
4

(t) ≥ 0, then E[Ψ(t+ 1) | x(t)] ≤ (1− αε
n )Ψ(t) + 1.

Proof. We first upper bound
∑n
i=1 pi(−α+Sα2)e−αxi for a fixed Ψ(x), for x which is non increasing with

∑
i xi =

0. Since (−α+ Sα2) is negative, we have

n∑
i=1

pi(−α+ Sα2)e−αxi ≤ (−α+ Sα2)
∑
i≥n4

pie
−αxi

Now set zi := e−αxi . Under the assumption on xn
4

, the sum
∑
i≥n4

zi is at least Ψ − n
4 . Since (−α + Sα2) is

negative, to upper bound the second term, we need to find the minimum value of∑
i≥n4

pizi

subject to∑
i≥n4

zi ≥ Ψ− n

4

zi−1 ≥ zi ∀ i > n
4 .

Since both p and z are (weakly) increasing, the minimum is achieved when zi =
4(Ψ−n4 )

3n for each i. Using the

assumption that
∑
i≥n/4 pi ≥

3
4 + ε we can bound the expression above by (−α+ Sα2)( 3

4 + ε)
4(Ψ−n4 )

3n . We can now
upper-bound the expected change in Ψ by plugging this bound in (7).

E[Ψ(t+ 1)−Ψ(t) | x(t)] ≤ (−α+ Sα2)( 3
4 + ε)

4(Ψ−n4 )

3n + α
n (1 + S αn )Ψ

= α
n

(
(1 + S αn )Ψ + (−1 + Sα)( 3

4 + ε) 4Ψ−n
3

)
= α

n

(
(1 + S αn )Ψ + Sα( 3

4 + ε) 4Ψ−n
3 − ( 3

4 + ε) 4Ψ−n
3

)
≤ αΨ

n

(
1 + S αn + Sα( 3

4 + ε) 4
3 − ( 3

4 + ε) 4
3

)
+
α

3
( 3

4 + ε)

≤ −αε
n

Ψ + 1

where the last inequality follows since ε ≤ 1
4 and Sα ≤ ε

6 .

The next lemma will be useful in the case that x 3n
4
> 0.

Lemma A.7. Suppose that x 3n
4
> 0 and E[∆Φ|x(t)] ≥ −αε

4nΦ. Then either Φ < ε
4Ψ or Γ < cn for some c =

poly( 1
ε ).

9



Proof. First note that the expected increase in Φ is at most∑
i

(pi(α+ Sα2)− α
n + S α

2

n2 )eαxi ≤
∑
i≤n/3

(pi(α+ Sα2)− α
n + S α

2

n2 )eαxi + (α+ Sα2)
∑
i>n/3

pie
αxi

≤ −αε
2n

Φ≤n/3 +
2α

n
Φ>n/3

≤ −αε
2n

Φ +
3α

n
Φ>n/3 (10)

where in the next to last inequality we used that for i ≤ n/3, pi ≤ 1−4ε
n and that for given Φ,

∑
pie

αxi is maximized
when p is uniform.

Thus E[∆Φ|x(t)] ≥ −αε
4nΦ implies that

3α

n
Φ>n

3
≥ αε

4n
Φ.

Let B =
∑
i max(0, xi) = 1

2 ||x||1. Note that Φ≥n3 is upper bounded by 2n
3 e

3αB
n . Thus

Φ ≤ 12

ε
Φ>n

3
≤ 8n

ε
e

3αB
n . (11)

On the other hand, x 3n
4
> 0 implies that Ψ ≥ n

4 e
4αB
n .

If Φ < ε
4Ψ, we are already done. Otherwise,

8n

ε
e

3αB
n ≥ Φ ≥ ε

4
Ψ ≥ εn

16
e

4αB
n

so that e
αB
n ≤ 128

ε2 . It follows that
Γ ≤ 5

εΦ ≤ 40n
ε2 ( 128

ε )3 ≤ cn.

Similarly,

Lemma A.8. Suppose that xn
4
< 0 and E[∆Ψ|x(t)] ≥ −αε

4nΨ. Then either Ψ < ε
4Φ or Γ < cn for some c = poly( 1

ε ).

Proof. First observe that for any i > 2n
3 , pi > 1+ε

n so that pi(−α+Sα2) + (αn +S α
2

n2 ) ≤ −αε
2n . Since pi ≥ 0 it holds

that pi(−α+ Sα2) + (αn + S α
2

n2 ) ≤ 2α
n for every i. Using the upper bound from (7) we get

E[∆Ψ | x(t)] ≤ −αε
2n

Ψ> 2n
3

+
2α

n
Ψ≤ 2n

3

= −αε
2n

Ψ +
4α+ αε

2n
Ψ≤ 2n

3

≤ −αε
2n

Ψ +
3α

n
Ψ≤ 2n

3
.

Thus E[∆Ψ | x(t)] ≥ −αε
4nΨ implies that

3α

n
Ψ≤ 2n

3
≥ αε

4n
Ψ.

Let B =
∑
i max(0, xi) = 1

2 ||x||1. Note that Ψ≤ 2n
3

is upper bounded by 2n
3 e

3αB
n . Thus

Ψ ≤ 12

ε
Ψ≤ 2n

3
≤ 8n

ε
e

3αB
n . (12)

On the other hand, xn
4
< 0 implies that Φ ≥ n

4 e
4αB
n .

10



If Ψ < ε
4Φ, we are already done. Otherwise,

8n

ε
e

3αB
n ≥ Ψ ≥ ε

4
Φ ≥ nε

16
e

4αB
n

so that e
αB
n ≤ 128

ε2 . It follows that
Γ ≤ 5

εΨ ≤ 40n
ε2 ( 128

ε )3 ≤ cn.

We are now ready to prove the supermartingale-type property of Γ.

Theorem A.9. Let Γ be as above. Then E[Γ(t+ 1) | x(t)] ≤ (1− αε
4n )Γ(t) + c, for a constant c = c(ε) = poly( 1

ε ).

Proof. The proof proceeds via a case analysis. In case the conditions, xn
4
≥ 0 and x 3n

4
≤ 0 hold, we show both Φ

and Ψ decrease in expectation. If one of these is violated Lemmas A.7 and A.8 come to the rescue.

Case 1: xn
4
≥ 0 and x 3n

4
≤ 0. In this case the theorem follows from Lemmas A.5 and A.6.

Case 2: xn
4
≥ x 3n

4
> 0. Intuitively, this means that the allocation is very non symmetric with big holes in the less

loaded bins. While Φ may sometimes grow in expectation, we will show that if that happens, then the asymmetry
implies that Γ is dominated by Ψ which decreases. Thus the decrease in Ψ offsets the increase in Φ and the expected
change in Γ is negative.

Formally, if E[∆Φ|x] ≤ −αε
4nΦ, Lemma A.6 implies the result. Otherwise, by Lemma A.7 there are two subcases:

Case 2.1: Φ < ε
4Ψ. In this case, using Lemma A.6 and Corollary A.2

E[∆Γ|x] = E[∆Φ|x] + E[∆Ψ|x] ≤ 2α

n
Φ− αε

n
Ψ + 1 ≤ −αε

2n
Ψ + 1 ≤ −αε

4n
Γ + 1

Case 2.2: Γ < cn. In this case, Corollaries A.2 and A.4 imply that

E[∆Γ|x] ≤ 2α

n
Γ ≤ 2cα.

On the other hand, c− αε
4nΓ ≥ c(1− αε

4 ) > 2cα.

Case 3: x 3n
4
≤ xn

4
< 0. This case is similar to case 2. If E[∆Ψ|x] ≤ −αε

4nΨ, Lemma A.5 implies the result.
Otherwise, by Lemma A.8 there are two subcases:

Case 3.1: Ψ < ε
4Φ. In this case, using Lemma A.5 and Corollary A.4, the claim follows.

Case 3.2: Γ < cn. This case is the same as case

Once we have shown that Γ decreases in expectation when large, we can use that to bound the expected value of Γ.
We are now ready to prove Theorem 2.1.

Theorem A.10. For any t ≥ 0, E[Γ(t)] ≤ 4c
αεn.

Proof. We show the claim by induction. For t = 0, it is trivially true. By Theorem A.9, we have

E[Γ(t+ 1)] = E[E[Γ(t+ 1) | Γ(t)]]

≤ E[(1− αε

4n
)Γ(t) + c]

≤ 4c

αε
n(1− αε

4n
) + c

≤ 4c

αε
n− c+ c

The claim follows.
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