Skip to main content

Between Linearizability and Quiescent Consistency

Quantitative Quiescent Consistency

  • Conference paper
Automata, Languages, and Programming (ICALP 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8573))

Included in the following conference series:

  • 1338 Accesses

Abstract

Linearizability is the de facto correctness criterion for concurrent data structures. Unfortunately, linearizability imposes a performance penalty which scales linearly in the number of contending threads. Quiescent consistency is an alternative criterion which guarantees that a concurrent data structure behaves correctly when accessed sequentially. Yet quiescent consistency says very little about executions that have any contention.

We define quantitative quiescent consistency (QQC), a relaxation of linearizability where the degree of relaxation is proportional to the degree of contention. When quiescent, no relaxation is allowed, and therefore QQC refines quiescent consistency, unlike other proposed relaxations of linearizability. We show that high performance counters and stacks designed to satisfy quiescent consistency continue to satisfy QQC. The precise assumptions under which QQC holds provides fresh insight on these structures. To demonstrate the robustness of QQC, we provide three natural characterizations and prove compositionality.

Research supported by NSF 0916741. The full version of this paper is available at http://arxiv.org/abs/1402.4043.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Afek, Y., Korland, G., Yanovsky, E.: Quasi-linearizability: Relaxed consistency for improved concurrency. In: Lu, C., Masuzawa, T., Mosbah, M. (eds.) OPODIS 2010. LNCS, vol. 6490, pp. 395–410. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  2. Aiello, W., Busch, C., Herlihy, M., et al.: Supporting increment and decrementoperations in balancing networks. Chicago J. Theor. Comput. Sci. (2000)

    Google Scholar 

  3. Aspnes, J., Herlihy, M., Shavit, N.: Counting networks. J. ACM 41(5), 1020–1048 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  4. Batty, M., Dodds, M., Gotsman, A.: Library abstraction for C/C++ concurrency. In: POPL (2013)

    Google Scholar 

  5. Busch, C., Mavronicolas, M.: The strength of counting networks (abstract). In: Burns, J.E., Moses, Y. (eds.) PODC, p. 311. ACM (1996)

    Google Scholar 

  6. Dwork, C., Herlihy, M., Waarts, O.: Contention in shared memory algorithms. J. ACM 44(6), 779–805 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Haas, A., Lippautz, M., Henzinger, T.A., et al.: Distributed queues in shared memory. In: Conf. Computing Frontiers, p. 17. ACM (2013)

    Google Scholar 

  8. Hendler, D., Incze, I., Shavit, N., Tzafrir, M.: Flat combining and the synchronization-parallelism tradeoff. In: SPAA, pp. 355–364 (2010)

    Google Scholar 

  9. Henzinger, T.A., Kirsch, C.M., Payer, H., Sezgin, A., Sokolova, A.: Quantitative relaxation of concurrent data structures. In: POPL, pp. 317–328 (2013)

    Google Scholar 

  10. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kaufmann (2008)

    Google Scholar 

  11. Herlihy, M., Wing, J.M.: Linearizability: a correctness condition for concurrent objects. ACM TOPLAS 12(3), 463–492 (1990)

    Article  Google Scholar 

  12. Lamport, L.: How to make a multiprocessor computer that correctly executes multiprocess programs. IEEE Trans. Comput. 28(9), 690–691 (1979)

    Article  MATH  Google Scholar 

  13. Sezgin, A.: Private correspondence (March 18, 2014)

    Google Scholar 

  14. Shavit, N.: Data structures in the multicore age. Commun. ACM 54(3), 76–84 (2011)

    Article  Google Scholar 

  15. Shavit, N., Touitou, D.: Elimination trees and the construction of pools and stacks (preliminary version). In: SPAA, pp. 54–63 (1995)

    Google Scholar 

  16. Shavit, N., Touitou, D.: Elimination trees and the construction of pools and stacks. Theory Comput. Syst. 30(6), 645–670 (1997)

    MATH  MathSciNet  Google Scholar 

  17. Shavit, N., Zemach, A.: Diffracting trees. ACM Trans. Comput. Syst. 14(4), 385–428 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jagadeesan, R., Riely, J. (2014). Between Linearizability and Quiescent Consistency. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds) Automata, Languages, and Programming. ICALP 2014. Lecture Notes in Computer Science, vol 8573. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43951-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43951-7_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43950-0

  • Online ISBN: 978-3-662-43951-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics