
Kleene Algebra with Equations

Dexter Kozen and Konstantinos Mamouras

Computer Science Department, Cornell University, Ithaca, NY 14853-7501, USA
{kozen,mamouras}@cs.cornell.edu

Abstract. We identify sufficient conditions for the construction of free
language models for systems of Kleene algebra with additional equa-
tions. The construction applies to a broad class of extensions of KA and
provides a uniform approach to deductive completeness and coalgebraic
decision procedures.

1 Introduction

Kleene algebra (KA) is the algebra of regular expressions. Introduced by Stephen
Cole Kleene in 1956, it is fundamental and ubiquitous in computer science.
It has proven useful in countless applications, from program specification and
verification to the design and analysis of algorithms [1–8].

One can augment KA with Booleans in a seamless way to obtain Kleene
algebra with tests (KAT). Unlike many other related logics for program veri-
fication, KAT is classically based, requiring no specialized syntax or deductive
apparatus other than classical equational logic. In practice, statements in the
logic are typically universal Horn formulas

s1 = t1 → s2 = t2 → · · · → sn = tn → s = t,

where the conclusion s = t is the main target task and the premises si = ti are
the verification conditions needed to prove it. The conclusion s = t may encode
a partial correctness assertion, an equivalence between an optimized and an un-
optimized version of a program, or an equivalence between a program annotated
with static analysis information and the unannotated program. The verification
conditions si = ti are typically simple properties of the underlying domain of
computation that describe how atomic actions interact with atomic assertions.
They may require first-order interpreted reasoning, but are proven once and for
all, then abstracted to propositional form. The proof of the conclusion s = t
from the premises takes place at the propositional level in KAT. This methodol-
ogy affords a clean separation of the theory of the domain of computation from
the program restructuring operations. It is advantageous to separate the two
levels of reasoning, because the full first-order theory of the domain of compu-
tation may be highly undecidable, even though we may only need small parts
of it. By isolating those parts, we can often maintain decidability and deductive
completeness.

A typical form of premise that arises frequently in practice is a commutativity
condition pb = bp for an action p and a test b. This captures the idea that the

action p does not affect the truth of b. For example, the action p might be an
assignment x := 3 and b might be a test y = 4, where x and y are distinct
variables. It is clear that the truth value of b is not affected by the action p, so
it would be the same before as after. But once this is established, we no longer
need to know what p and b are, but only that pb = bp. It follows by purely
equational reasoning in KAT that p1b = bp1 → · · · → pnb = bpn → qb = bq,
where q is any program built from atomic actions p1, . . . , pn.

In some instances, Horn formulas with premises of a certain form can be
reduced to the equational theory without loss of deductive completeness or de-
cision efficiency using a technique known as elimination of hypotheses [3, 9, 10].
One important class of premises for which this is possible are those of the form
s = 0. The universal Horn theory restricted to premises of this form is called
the Hoare theory, because it subsumes Hoare logic: the partial correctness as-
sertion {b}p{c} can be encoded as the equation bpc̄ = 0. Other forms that arise
frequently in practice are bp = b, which says that the action p is not necessary
if b is true, useful in optimizations to eliminate redundant actions; and pq = qp,
which says that the atomic actions p and q can occur in either order with the
same effect, useful in reasoning about concurrency. Unfortunately, KAT with
general commutativity assumptions pq = qp is undecidable [12].

As a case in point, the NetKAT system [8] incorporates a number of such
equational premises as part of the theory, which are taken as additional axioms
besides those of KAT. Proofs of deductive completeness and complexity as given
in [8] required extensive adaptation of the analogous proofs for KA and KAT.
Indeed, this was already the case with KAT, which was an adaptation of KA to
incorporate an embedded Boolean algebra.

Although each of these instances was studied separately, there are some strik-
ing similarities. It turns out that the key to progress in all of them is the iden-
tification of a suitable class of language models that characterize the equational
theory of the system. A language model is a structure in which expressions are
interpreted as sets of elements of some monoid. The language models should form
the free models for the system at hand. For KA, a language model is the regular
sets of strings over a finite alphabet, elements of a free monoid; for KAT, the reg-
ular sets of guarded strings; for NetKAT, the regular sets of strings of a certain
reduced form. Once a suitable class of language models can be determined, this
opens the door to a systematic treatment of deduction and coalgebraic decision
algorithms. The question thus presents itself: Is there a general set of criteria
that admit a uniform construction of language models and that would apply in
a broad range of situations and subsume previous ad hoc constructions? That is
the subject of this paper.

Alas, such a grand unifying framework is unlikely, given the negative results
of [12] and of §2. However, we have identified a framework that goes quite far
in this direction. It applies in the case in which the additional equational ax-
ioms are monoid equations or partial monoid equations (as is the case in all the
examples mentioned above) and is based on a well-studied class of rewrite sys-
tems called inverse context-free systems [13]. We give criteria in terms of these

2

rewrite systems that imply the existence of free language models in a wide range
of previously studied instances, as well as some new ones.

This paper is organized as follows. In §2 we present preliminary definitions
and our negative result limiting the applicability of the method. In §3 we es-
tablish a connection between the classical theory of string rewriting and Kleene
algebra. We recall from [13] the definition of inverse context-free rewrite systems
and the key result that they preserve regularity. The original proof involved an
automata-theoretic construction, but we show that it can be carried out ax-
iomatically in KA. In §4 we give examples of partial and total monoid equations
and give a general construction that establishes completeness in those cases. The
construction is a special case of the more general results of §5, but we start with
it as a conceptual first step to illustrate the ideas. However, we can already derive
some interesting consequences in this special case. In §5, we establish complete-
ness for typed monoid equations. This is the most general setting covered in this
paper. We give the completeness proof along with several applications. In §6 we
present conclusions, future work, and open problems.

Omitted proofs can be found in the appendix.

2 Preliminaries and a Negative Result

Let Σ be a finite alphabet of symbols. The free monoid (Σ∗, ·, ε) generated by
Σ is the set Σ∗ of strings or words over Σ together with the operation · of string
concatenation and the empty string ε as identity. To generalize this construction,
we consider a finitely presented monoid M = 〈a, b, . . . | u1 ≡ u2, v1 ≡ v2, . . .〉
with a finite set of generators Σ = {a, b, . . .} and a finite set of relations R =
{(u1, u2), (v1, v2), . . .}. We interchangeably write a relation as an equation u ≡ u′
or as a pair (u, u′). Let ↔∗R be the smallest congruence on Σ∗ that contains R.
The congruence class of a string u is denoted by [u]. The finitely presented
monoid M = 〈Σ | R〉 = Σ∗/R has the congruence classes {[u] | u ∈ Σ∗} of ↔∗R
as its carrier. Multiplication is given by [u] · [v] 7→ [uv], and the identity is [ε].

We define regular expressions over the alphabet Σ to be the terms given by
the grammar e, e1, e2 ::= a ∈ Σ | 1 | 0 | e1 + e2 | e1; e2 | e∗. We can interpret
a regular expression as a subset of a finitely presented monoid M = 〈Σ | R〉
with multiplication · and identity 1M = [ε]. The function RM , called language
interpretation in M , sends a regular expression to a set of elements of M :

RM (a) = {[a]} RM (e1 + e2) = RM (e1) ∪RM (e2)
RM (1) = {1M} RM (e1; e2) = RM (e1) · RM (e2)
RM (0) = ∅ RM (e∗) =

⋃
n≥0RM (e)n

where · on sets is given by A · B = {u · v | u ∈ A, v ∈ B}, and An is defined
inductively as A0 = RM (1) and An+1 = An ·A. The image of the interpretation
RM together with the operations ∪, ·, ∗, ∅, {1M} is the algebra of regular sets
over M , denoted by RegM . If M is the free monoid Σ∗, thenRM is the standard
language interpretation of regular expressions.

It is known that the algebra of regular sets RegΣ∗ is the free Kleene algebra
generated by Σ [11]. This is equivalent to the completeness of the axioms of KA

3

for the standard language interpretation R of regular expressions. That is, for
any two regular expressions e1, e2 over Σ, if R(e1) = R(e2) then KA ` e1 ≡ e2.
The question then arises if this result extends to the general case of RegM
for a finitely presented monoid M = 〈Σ | R〉. We ask the question of whether
RM (e1) = RM (e2) implies provability of e1 ≡ e2 in a system of KA augmented
with (at least) the equations corresponding to the relations R.

In general, the answer to the question posed in the previous paragraph is
negative. That is, there exists a finitely presented monoid M = 〈Σ | R〉 such
that the equational theory of RegM is not recursively enumerable, and therefore
not recursively axiomatizable. The equational theory of the Kleene algebra RegM
is the set of equations between regular expressions that are true in RegM under
the interpretation RM , i.e., the set {e1 ≡ e2 | RM (e1) = RM (e2)}. We show
this negative result using the ideas developed in [12]. The proof specifies a way
to construct effectively the monoid whose existence we claim.

Theorem 1. There exists a finitely presented monoid M such that the equa-
tional theory of RegM is not recursively enumerable.

This negative result says that we can only hope to identify subclasses of
finitely presented monoids M such that the algebra RegM of regular sets over M
is axiomatizable. The idea is to first restrict attention to those finite monoid pre-
sentations, where the equations can be oriented to give a confluent and terminat-
ing rewrite system. This allows one to consider as canonical representatives the
irreducible strings of the congruence classes. Then, we focus on a subclass that
allows two crucial algebraic constructions: a “descendants” automata-theoretic
construction, and an “ancestors” construction, which is a homomorphism.

3 String Rewriting Systems

In this section we establish a connection between the classical theory of string
rewriting systems and Kleene algebra. More specifically, we recall a result re-
garding the preservation of regularity: for every inverse context-free system R
and a regular set L, the set of the R-descendants of L is also regular [13]. This
result involves an automata-theoretic construction, which can be modeled in KA,
because an automaton can be represented as an approprivate KA term [11]. The
combinatorial arguments of the construction can then be replaced by equational
reasoning in KA. As it turns out, this connection will allow us to obtain powerful
completeness metatheorems in later sections.

A string rewriting system R over a finite alphabet Σ consists of rules `→ r,
where ` and r are finite strings over Σ. This extends to the one-step rewrite
relation →R, given by x`y →R xry, for strings x, y and rule ` → r of R. If
x →R y then we say that y is an R-successor of x, and x is an R-predecessor
of y. We write →∗R for the reflexive-transitive closure of →R, which is called the
rewrite relation for R. If u, v are strings for which u →∗R v we say that v is an
R-descendant of u, and that u is an R-ancestor of v. For a set of strings L:

DescR(L) = {v | ∃u ∈ L. u→∗R v} AnceR(L) = {u | ∃v ∈ L. u→∗R v}

4

So, DescR(L) is the set of all the R-descendants of the strings in L, and similarly
AnceR(L) is the set of all R-ancestors of the strings in L. The inverse system R−1

of R is the system that results by taking a rule r → ` for every rule `→ r of R.
If u is an R-ancestor of a string v, then u is an R−1-descendant of v. Define ↔∗R
to be the smallest congruence on Σ∗ that contains {(u, v) | u→ v is R-rule}.
The congruence class of a string u is denoted by [u].

Lemma 1. Let R be a rewrite system consisting of rules of the form a → r,
where a is a letter. Assume further that every set DescR(a) is regular with
R(ea) = DescR(a) for some regular expression ea. Define the substitution θ by
a 7→ ea, and extend it to all expressions. Then, DescR(R(e)) = R(θ(e)).

Let R be a rewrite system. We say that R is terminating if there is no infinite
rewrite chain x0 →R x1 →R x2 →R · · · . If R has rules of the form ` → r with
|r| < |`| then it is terminating, because every rule application strictly reduces
the length of the string. A string x is called R-irreducible if no rule of R applies
to it, that is, there is no y with x →R y. We say that R is confluent if u →∗R x
and u→∗R y imply that there exists z with x→∗R z and y →∗R z. It is said that
R has the Church-Rosser property (we also say that “R is Church-Rosser”) if for
all strings x, y with x↔∗R y there exists z such that x→∗R z and x→∗R z. It is a
standard result that confluence and the Church-Rosser property are equivalent
[13]. A system R is said to be locally (or weakly) confluent if for all strings u, x, y
with u→R x and u→R y, there exists a string z such that x→∗R z and x→∗R z.
If R is both locally confluent and terminating, then R is confluent [13].

Suppose that R is confluent and terminating. We map each string u to the
unique R-irreducible string rdR(u) that results from rewriting u as much as
possible. When the rewrite system R is apparent from context, we simply write
rd(u) instead of rdR(u). For strings u, v, it holds that u↔∗R v iff rd(u) = rd(v). So,
two strings are congruent iff they can be rewritten to the same R-irreducible. For
every congruence class [u] of↔∗R, we choose for canonical representative (normal
form) the R-irreducible string rd(u).

Definition 1 (Total Fusion Product). Assume that R is confluent and ter-
minating. We take IR to be the set of R-irreducible strings. Define the binary
operation � on IR, which we call fusion product, by u � v = rd(uv). The struc-
ture (IR, �, rd(ε)) is a monoid. We lift the operation of fusion product to sets of
irreducible strings as A �B = {u � v | u ∈ A, v ∈ B}.
Definition 2. Let R be an arbitrary string rewriting system. For a language
L ⊆ Σ∗, we define CR(L) =

⋃
u∈L[u] = {v | ∃u ∈ L. v ↔∗R u}. We note that

CR(L), which is a set of strings, is not equal to {[u] | u ∈ L}, which is a set
of equivalence classes of strings. Assume additionally that R is confluent and
terminating, so that the function rdR is well-defined. For L ⊆ Σ∗, we define
GR(L) = {rdR(u) | u ∈ L}, which is a set of R-irreducible strings.

Lemma 2. Let R be a confluent and terminating rewrite system over Σ.
1. CR(L) =

⋃
{[u] | u ∈ GR(L)}, for a language L ⊆ Σ∗.

2. GR(L1) = GR(L2) iff CR(L1) = CR(L2), for languages L1, L2 ⊆ Σ∗.
3. CR(L) = AnceR(DescR(L)), for a language L ⊆ Σ∗.

5

A rewrite system R is said to preserve regularity if for every regular language
L, the R-descendants DescR(L) for a regular set. A system R is called inverse
context-free if it only contains rules of the form ` → r, where |r| ≤ 1. That
is, every right-hand side of a rule is either a single letter or the empty string.
A classical result of the theory of string rewriting is that inverse context-free
systems preserve regularity (see Chapter 4 of [13] for a detailed proof). The
proof of this fact uses a construction on finite automata, which we briefly present
here. We will be referring to it as the descendants construction. Suppose that L
is a regular language, recognized by an automaton A. The automaton is possibly
nondeterministic and it may have epsilon transitions. We will describe a sequence
of transformations on A. When the sequence reaches a fixpoint, we obtain an
automaton (nondeterministic with epsilon transitions) that recognizes DescR(L).

– Suppose that the system R has a rule ` → a, where a is a single letter,
and ` = `1`2 · · · `m is a string of length m. We assume that there is an `-
path from the state q0 to the state qn of the automaton. That is, a sequence

q0
x1−→ q1

x2−→ q2
x3−→ · · · xn−1−−−→ qn−1

xn−→ qn, where each xi is a letter or ε,

x1 · x2 · · ·xn−1 · xn = `, and each qi−1
xi−→ qi is a transition of the automaton.

We add the transition q0
a−→ qn. The idea is that if the automaton accepts a

string x`y, then it should also accept the R-descendant xay.
– Similarly, suppose that the system R has a rule `→ ε, where ε is the empty

string, and that there is an `-path from the state q0 to the state qn. Then, we
add the epsilon transition q0

ε−→ qn to the transition table of the automaton.
This process is iterated until no new transitions are added. The resulting au-
tomaton accepts exactly the set of R-descendants DescR(L).

Theorem 2. Let R be an inverse context-free rewrite system, and e be a regular
expression, whose interpretation is L = R(e). We can construct effectively a new
regular expression ê such that KAR ` e ≡ ê and R(ê) = DescR(L). KAR is the
system KA augmented with an equation ` ≡ r for every rewrite rule `→ r of R.

Theorem 2 says that the descendants construction, which is combinatorial,
can be modeled algebraically in the system of KA with some extra equations.
This is a central technical result that we will use for our later theorems.

4 Completeness: (Partial) Monoid Equations

In this section we present our first completeness metatheorems, from which we
can prove the existence of free language models for systems of KA with extra
monoid and partial monoid equations. Our metatheorems are not only a concep-
tual first step towards the more general typed monoid case, which we investigate
in §5, but they also allow us to obtain previously unknown completeness re-
sults. As a concrete novel application, think of the assignment statement x := c,
where c is a constant. The action x := c is idempotent, meaning that the effect
of x := c;x := c is the same as the effect of x := c. We express this fact with the
monoid equation aa ≡ a, where a is a single letter abstraction of the assignment.
KA can be augmented with any number of such idempotence equations, and our
metatheorem implies the existence of a free language model (see Example 1).

6

Definition 3 (Language Interpretation). Let R be a confluent and termi-
nating rewrite system. The corresponding fusion product is �. We define induc-
tively the function GR that sends a regular expression to a set of R-irreducibles:

GR(a) = {rdR(a)} GR(e1 + e2) = GR(e1) ∪ GR(e2)
GR(0) = ∅ GR(e1; e2) = GR(e1) � GR(e2)
GR(1) = {rdR(ε)} GR(e∗) =

⋃
n≥0 GR(e)〈n〉

where, for a setA ofR-irreducibles,A〈n〉 is defined byA〈0〉 = GR(1) andA〈n+1〉 =
A〈n〉 �A. We also define the interpretation CR(e) = CR(R(e)) =

⋃
u∈R(e)[u].

Let R be a confluent and terminating system over Σ, and M = 〈Σ | R〉 be
the corresponding monoid. For a regular expression e, we have that RM (e) =
{[u] | u ∈ GR(e)}. The algebra RegM is isomorphic to the algebra that is the
image of GR. This implies that RM (e1) = RM (e2) iff GR(e1) = GR(e2). So, our
investigations of semantic completeness can be with respect to the interpretation
GR.

Lemma 3. Let R be a confluent and terminating string rewrite system.
1. GR(e) = {rdR(u) | u ∈ R(e)} = GR(R(e)), for an expression e.
2. CR(e) =

⋃
{[v] | v ∈ GR(e)}, for an expression e.

3. GR(e1) = GR(e2) iff CR(e1) = CR(e2), for expressions e1, e2.

Definition 4 (Well-Behaved Rewrite System). Let R be a rewrite system
over Σ. We say that R is well-behaved if it consists of finitely many rules `→ r
with |r| = 1 and |`| > 1, and it additionally satisfies confluence and the following
property: For every letter a of the alphabet, the R-ancestors of a form a regular
set R(ea) for some expression ea, so that KAR ` ea ≡ a. Recall that KAR is the
system of KA extended with equations corresponding to the rules of R.

Intuitively, we say that R is well-behaved if it allows two important algebraic
constructions. First, the special form of the rules allows the automata-theoretic
descendants construction (described in §3), which can be modeled in KA, because
automata can be encoded as matrices. Then, the regularity requirement for the
sets of R-ancestors of single letters implies that we can apply a homomorphism to
obtain all the ancestors of a regular set. We can thus “close” a regular expression
under the congruence induced by R.

Theorem 3 (Completeness). Let R be a well-behaved rewrite system over Σ.
For any expressions e1 and e2, GR(e1) = GR(e2) implies that KAR ` e1 ≡ e2.

Example 1 (Idempotence Hypotheses). We will see how the general com-
pleteness metatheorem we have shown (Theorem 3) can be used to obtain a
completeness result for the regular algebra of a simple finitely presented monoid.
Consider the monoid M = 〈a, b | aa ≡ a〉. The rewrite system R contains only
the rule aa→ a. In order to invoke Theorem 3 we verify that R is well-behaved:
• For the only rule ` = aa→ a = r of R, we have that |r| = 1 and |`| > 1.
• To show confluence of R, it is sufficient to show local confluence, since R

is terminating. Suppose that u → x and u → y. If x = y, we are done. If
x 6= y, then u, x, y must be of the following forms: u = v1a

m+1v2a
n+1v3, x =

v1a
mv2a

n+1v3, and y = v1a
m+1v2a

nv3. Notice now that x, y → v1a
mv2a

nv3,
which establishes local confluence.

7

• For the R-ancestors of the letters a and b, we see that AnceR(b) = {b}, and
AnceR(a) = {ai | i ≥ 1} = R(a+), where a+ = a; a∗. We put eb = b and
ea = a+. Clearly, KAR ` eb ≡ b. Reasoning in KAR: a ≤ a+ and a+ = a; a∗ ≤
a⇐= a; a ≤ a⇐= a; a ≡ a. We have thus shown that KAR ` ea ≡ a.

Since the rewrite system R satisfies the conditions of Theorem 3, we get com-
pleteness of KA together with the equation a; a ≡ a for the interpretation RM .

We would like to generalize our result in a way that allows us to designate
certain strings as being non-well-formed or undefined. Any string with a non-
well-formed substring has to be discarded from the interpretation. For a string
a1 · · · ak over the alphabet, we declare it to be non-well-formed using the equation
a1 · · · ak ≡ ⊥, where ⊥ is a special “undefined” symbol.

We define a partial monoid to be an algebraic structure (M, ·, 1M ,⊥M) satis-
fying the monoid axioms, as well as the equations x·⊥M = ⊥M and ⊥M ·x = ⊥M .
The identity is 1M , and ⊥M is called the undefined element of M . In a presen-
tation of a partial monoid M⊥ = 〈Σ | x1 ≡ y1, x2 ≡ y2, . . . , z1 ≡ ⊥, z2 ≡ ⊥, . . .〉
we allow equations x ≡ y between strings over Σ (call the collection of these R),
as well as equations of the form z ≡ ⊥, where z is a string over Σ. In order to
give a concrete description of the partial monoid, we consider the strings over
the extended alphabet Σ ∪ {⊥}, and the equations R⊥:

xi ≡ yi zi ≡ ⊥ a⊥ ≡ ⊥, ⊥a ≡ ⊥ (a ∈ Σ) ⊥⊥ ≡ ⊥
Let ∼ be the smallest congruence on (Σ ∪ {⊥})∗ that contains the relations
R⊥. The partial monoid M⊥ is the set of strings (Σ ∪ {⊥})∗ quotiented by
the congruence ∼, and hence equal to 〈Σ ∪ {⊥} | R⊥〉. The identity is the
∼-congruence class [ε], and the undefined element is the class of [⊥].

Assumption 1. We collect a list of assumptions for (Σ,R,R⊥). First, assume
that R is a confluent and terminating rewrite system over the alphabet Σ. The
rewrite system R⊥ extends R with rules of the form z → ⊥, where z ∈ Σ∗ and
|z| ≥ 2. Moreover, R⊥ contains the rule ⊥⊥ → ⊥, as well as all the rules a⊥ → ⊥
and ⊥a→ ⊥ for every letter a ∈ Σ. We further assume that R⊥ is terminating,
and that the seamlessness property is satisfied: If xzy is a string with z → ⊥
in R⊥, then any R-successor of xzy is of the form x′z′y′, where z′ → ⊥ is in
R⊥. Intuitively, seamlessness says that if a string contains a non-well-formed
substring, then no R-rewriting can make it well-formed.

Definition 5 (Partial Fusion Product). Let (Σ,R,R⊥) satisfy Assump-
tion 1. Define the partial fusion product operation � on R⊥-irreducibles in Σ∗:

u � v = rdR(uv), if uv 6∼ ⊥; u � v = undefined, if uv ∼ ⊥.

The condition uv 6∼ ⊥ is equivalent to rdR(uv) not having a substring z with z →
⊥. We lift the fusion product into a total operation on sets of R⊥-irreducibles:
A �B = {u � v | u � v exists, u ∈ A, v ∈ B}.
Definition 6 (Language Interpretation). Let (Σ,R,R⊥) satisfy Assump-
tion 1. For a string u, define [u]Σ = Σ∗ ∩ [u]. For a language L ⊆ Σ∗, put:

GR⊥(L) = {rdR(u) | u ∈ L} \ [⊥]Σ CR⊥(L) = [⊥]Σ ∪
⋃
u∈L[u]Σ

Now, GR⊥ sends a regular expression to a set of R⊥-irreducibles of Σ∗:
GR⊥(a) = {rdR(a)} \ [⊥]Σ GR⊥(e1 + e2) = GR⊥(e1) ∪ GR⊥(e2)

8

GR⊥(0) = ∅ GR⊥(e1; e2) = GR⊥(e1) � GR⊥(e2)
GR⊥(1) = {rdR(ε)} \ [⊥]Σ GR⊥(e∗) =

⋃
n≥0 GR⊥(e)〈n〉

where A〈0〉 = GR⊥(1) and A〈n+1〉 = A〈n〉 � A. Define CR⊥(e) = CR⊥(R(e)). The
interpretation GR⊥ discards the undefined strings, but CR⊥ adds them all in.

Definition 7 (Well-Behaved). Suppose that (Σ,R,R⊥) satisfies Assumption 1.
We say that it is well-behaved if R⊥ consists of finitely many rules, every rule
` → r of R satisfies |r| = 1 and |`| > 1, and it satisfies the property: For every
letter a of the alphabet, the R-ancestors of a form a regular set R(ea) for some
regular expression ea, so that KAR ` ea ≡ a. The empty string and the single-
letter strings are R⊥-irreducible. We write KAR⊥ for the system KAR extended
with an equation a1; · · · ; ak ≡ 0 for every rewrite rule a1 · · · ak → ⊥ of R⊥.

Lemma 4 (⊥-class). Suppose that (Σ,R,R⊥) is well-behaved. The setΣ∗∩[⊥]
is regular. For the corresponding expression e⊥ is holds that KAR⊥ ` e⊥ ≡ 0.

Theorem 4 (Completeness). Suppose that (Σ,R,R⊥) is well-behaved. Then,
GR⊥(e1) = GR⊥(e2) implies that KAR⊥ ` e1 ≡ e2.

5 Completeness: Typed Monoid Equations

We further generalize the partial monoid setting by assuming more structure on
the strings and the rewrite system. One major difference from the partial monoid
case is the introduction of a new category of primitive symbols, the subidentities,
which allow the encoding of Booleans. We show how to cover several examples:
plain KAT, KAT with simple Hoare hypotheses b; p; c ≡ 0, KAT with hypotheses
c; p ≡ c, and NetKAT. There are even more applications which for lack of space
we do not present here: commutativity equations b; p ≡ p; b (test b, atomic action
p), Boolean equations b ≡ c (tests b, c), and so on. These examples attest to the
generality and wide applicability of our technique.

Assumption 2. We collect a list of assumptions for (P, Id , R,R⊥). Let Σ =
P ∪ Id be a finite alphabet, whose symbols are partitioned into a set P of
action symbols and a set Id of subidentities. We write p, q, r, . . . to vary over
actions symbols, α, β, γ, . . . to vary over subidentities, and a, b, c, . . . to vary over
arbitrary symbols of Σ. Let S be the subset of Σ∗ consisting of all strings in
which an action symbol p always appears surrounded by subidentities, as in αpβ.
Examples of elements of S are: α, αα, αβ, αpα, αpβ, ααpβ, ααpβqγγ, αβpγ,
and so on. The set S is regular, and the corresponding regular expression is
eS = Id · (Id∗ · P · Id)∗ · Id∗. Let R be a rewrite system over Σ that includes at
least the rules αα→ α for every subidentity α ∈ Id , and additionally it satisfies:
(1) S is closed under →R: if x ∈ S and x →R y then y ∈ S. Moreover, S is
closed under the inverse of →R: if y ∈ S and x→R y then x ∈ S. (2) For every
rule ` → r of R we have that |`| > |r|. (3) R is confluent on S: For u, x, y ∈ S,
u →∗R x and u →∗R y imply that x →∗R z and y →∗R z for some z ∈ S. Now,
suppose that R⊥ extends R with the rules αβ → ⊥ for all subidentities α 6= β,
and possibly more rules of the form z → ⊥, where z ∈ S and |z| ≥ 2. Moreover,
R⊥ contains all the rules a⊥ → ⊥, ⊥a→ ⊥ (for each a ∈ Σ), as well as the rule

9

⊥⊥ → ⊥. We assume that R⊥ satisfies additionally the seamlessness property :
For xzy ∈ S with z → ⊥ in R⊥, any R-successor of xzy is of the form x′z′y′ for
some rule z′ → ⊥ of R⊥. We will use the term irreducible (unqualified) to mean
R⊥-irreducible of S. Finally, define the function cp to send every letter a of Σ to a
finite subset cp(a) of S, called the components of a. For a subidentity α ∈ Id , we
put cp(α) = {α}. For an action symbol p ∈ P , we put cp(p) = {αpβ | α, β ∈ Id}.
Definition 8 (Language Interpretation). Let (P, Id , R,R⊥) satisfy Assump-
tion 2. For a string u, we put [u]S = S ∩ [u]. For a language L ⊆ S, we define:

GR⊥(L) = {rdR(u) | u ∈ L} \ [⊥]S CR⊥(L) = [⊥]S ∪
⋃
u∈L[u]S

The fusion product of irreducibles, written �, is defined as in Definition 5. The
interpretation GR⊥ sends a regular expression to a set of irreducibles:

GR⊥(a) = rdR(cp(a)) \ [⊥]S GR⊥(e1 + e2) = GR⊥(e1) ∪ GR⊥(e2)
GR⊥(0) = ∅ GR⊥(e1; e2) = GR⊥(e1) � GR⊥(e2)
GR⊥(1) = Id GR⊥(e∗) =

⋃
n≥0 GR⊥(e)〈n〉

Define CR⊥(e) = CR⊥(R(e)), for expressions e with R(e) ⊆ S.

Definition 9 (Well-Behaved). Let (P, Id , R,R⊥) be a tuple satisfying As-
sumption 2. We say that the tuple is well-behaved if R⊥ consists of finitely many
rules, every rule ` → r of R satisfies |r| = 1 and |`| > 1, and it satisfies the
following property: For every letter a of the alphabet, the R-ancestors of a form
a regular set R(ea) for some regular expression ea, so that KAR ` ea ≡ a.

We define the finite collection E of equations associated with the well-behaved
tuple (P, Id , R,R⊥) to contain: (1) an equation x ≡ y for every rule x→ y of R,
(2) an equation z ≡ 0 for every rule z → ⊥ of R⊥, as well as (3) the equation∑
α∈Id α ≡ 1. We write KAE for the system of KA augmented with the equations

E. We can prove in KAE the equation
∑
x∈cp(a) x ≡ a for every letter a.

Lemma 5 (Interpret within S). Let (P, Id , R,R⊥) be well-behaved, and E
be the associated equations. Define the substitution θ by: 1 7→

∑
α α and a 7→∑

x∈cp(a) x, for every letter a ∈ Σ. Let e be an arbitrary expression. It holds

that GR⊥(e) = GR⊥(θ(e)). Moreover, GR⊥(e) = GR⊥(e;
∑
α α). For the expression

ẽ = θ(e);
∑
α α we have that GR⊥(ẽ) = GR⊥(e), R(ẽ) ⊆ S, and KAE ` ẽ ≡ e.

Lemma 6 (⊥-Class). Let (P, Id , R,R⊥) be well-behaved. The set S ∩ [⊥] is
regular. For the corresponding expression e⊥ it holds that KAR⊥ ` e⊥ ≡ 0.

Theorem 5 (Completeness). Let (P, Id , R,R⊥) be well-behaved, and E be the
associated equations. Then, GR⊥(e1) = GR⊥(e2) implies that KAE ` e1 ≡ e2.

5.1 Applications

Theorem 5 will give us four completeness results as corollaries. First, we will
show that KAT is complete for the standard interpretation of KAT expressions
as sets of guarded strings. We then extend this result to the cases where KAT
is augmented with simple Hoare hypotheses b; p; c ≡ 0 (tests b, c, atomic action
p), and with hypotheses c; p ≡ c (test c, atomic action p). We conclude with a
completeness proof for NetKAT.

10

Theorem 6. Let GKAT be the standard interpretation of KAT expressions. For
any e1 and e2, it holds that GKAT(e1) = GKAT(e2) implies KAT ` e1 ≡ e2.

A simple Hoare assertion is an expression {b}p{c}, where b, c are tests and p is
an atomic action. It can be encoded in KAT with the equation b; p;¬c ≡ 0. This
equation is equivalent to the conjunction of the equations β; p; γ ≡ 0, where β, γ
are atoms with β ≤ b and γ ≤ ¬c. So, w.l.o.g. we restrict attention to assertions
of the form β; p; γ ≡ 0, where β, γ are atoms and p is an atomic action.

Theorem 7. Let Zh be a finite collection of strings of the form γpδ, where
γ, δ are atoms and p is an atomic action symbol. Let W be the set of strings
containing some γpδ in Zh, and H be the collection of equations γ; p; δ ≡ 0 for
every γpδ in Zh. Define the interpretation Gh by Gh(e) = GKAT(e) \W , which
intuitively discards the guarded strings that violate the Hoare hypotheses. Then,
Gh(e1) = Gh(e2) implies KAT + H ` e1 ≡ e2, where KAT + H is the system of
KAT augmented with the Hoare hypotheses H.

We consider now another class of equations of the form c; p ≡ c, where c
is a test and p is an atomic action. We see that c; p ≡ c is equivalent to the
conjunction of γ; p ≡ γ for γ ≤ c. So, we can restrict our attention to equations
of the form γ; p ≡ γ, where γ is an atom, and p is an atomic action.

Theorem 8. Let X be a finite set of strings of the form γp, where γ is an atom
and p is an atomic action symbol, and H be the set of equations γ; p ≡ γ for
every γp in X. For an atomic action symbol p, define the set of atoms A(p) =
{γ | γp ∈ X}. Intuitively, A(p) is the set of atoms after which it is redundant to
execute the action p. Let Gh be the interpretation that differs from GKAT only for
the base case of atomic action symbols: Gh(p) = A(p) ∪ {γpδ | γ /∈ A(p)}. Then,
Gh(e1) = Gh(e2) implies KAT+H ` e1 ≡ e2, for any KAT expressions e1, e2.

We turn to the case of NetKAT. Fix an alphabet At of atoms. For α ∈ At
we introduce an action symbol pα, and we put P = {pα | α ∈ At}. Let dup be a
new action symbol, and set Σ = P ∪ {dup} ∪At . NetKAT extends KA with:∑

α∈At α ≡ 1 α; dup ≡ dup;α pα ≡ pα;α
α;β ≡ 0 (α 6= β) pα; pβ ≡ pβ α ≡ α; pα

The axioms imply α;α ≡ α; pα;α ≡ α; pα ≡ α, for every atom α. So, NetKAT
can also be defined as an extension of KAT. The following axioms∑

α∈At α ≡ 1 α;α ≡ α a; pα;α ≡ α α; dup;β ≡ 0 (α 6= β)
α;β ≡ 0 (α 6= β) pα;α; pβ ≡ pβ α; pβ ; γ ≡ 0 (β 6= γ)

give an equivalent axiomatization of NetKAT (see Lemma 11 in the appendix).

Theorem 9. Let At be the subidentities (atoms), and P ′ = P ∪ {dup} be the
alphabet of action symbols, where P = {pα | α ∈ At}. Define R and R⊥ as:

αα→ α (α ∈ At) αpαα→ α (α ∈ At) pααpβ → pβ (α, β ∈ At)
αβ → ⊥ (α 6= β) αdupβ → ⊥ (α 6= β) αpβγ → ⊥ (β 6= γ)

(P ′,At , R,R⊥) is well-behaved, and NetKAT is complete for GR⊥ .

6 Conclusion

We have identified sufficient conditions for the construction of free language
models for systems of Kleene algebra with additional equations. The construc-

11

tion provides a uniform approach to deductive completeness and coalgebraic de-
cision procedures. The criteria are given in terms of inverse context-free rewrite
systems [13]. They imply the existence of free language models in a wide range
of previously studied instances, including KAT [6] and NetKAT [8], as well as
some new ones. We have also given a negative result that establishes a limit to
the applicability of the technique.

Acknowledgments

We acknowledge Bjørn Grathwohl and Stathis Zachos for helpful remarks.

References

1. Angus, A., Kozen, D.: Kleene algebra with tests and program schematology.
Technical Report TR2001-1844, Computer Science Department, Cornell Univer-
sity (July 2001)

2. Barth, A., Kozen, D.: Equational verification of cache blocking in LU decompo-
sition using Kleene algebra with tests. Technical Report TR2002-1865, Computer
Science Department, Cornell University (June 2002)

3. Cohen, E.: Hypotheses in Kleene algebra. Technical Report TM-ARH-023814,
Bellcore (1993) http://citeseer.nj.nec.com/1688.html.

4. Cohen, E.: Lazy caching in Kleene algebra (1994)
http://citeseer.nj.nec.com/22581.html.

5. Cohen, E.: Using Kleene algebra to reason about concurrency control. Technical
report, Telcordia, Morristown, N.J. (1994)

6. Kozen, D.: Kleene algebra with tests. Transactions on Programming Languages
and Systems 19(3) (May 1997) 427–443

7. Kozen, D., Patron, M.C.: Certification of compiler optimizations using Kleene
algebra with tests. In: Proceedings of the First International Conference on Com-
putational Logic. CL ’00 (2000) 568–582

8. Anderson, C.J., Foster, N., Guha, A., Jeannin, J.B., Kozen, D., Schlesinger, C.,
Walker, D.: NetKAT: Semantic foundations for networks. In: Proc. 41st ACM
SIGPLAN-SIGACT Symp. Principles of Programming Languages (POPL’14), San
Diego, California, USA, ACM (January 2014) 113–126

9. Kozen, D., Smith, F.: Kleene algebra with tests: Completeness and decidability.
In van Dalen, D., Bezem, M., eds.: Proc. 10th Int. Workshop Computer Science
Logic (CSL’96). Volume 1258 of Lecture Notes in Computer Science., Utrecht, The
Netherlands, Springer-Verlag (September 1996) 244–259

10. Hardin, C., Kozen, D.: On the elimination of hypotheses in Kleene algebra with
tests. Technical Report TR2002-1879, Computer Science Department, Cornell Uni-
versity (October 2002)

11. Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular
events. Information and Computation 110(2) (1994) 366–390

12. Kozen, D.: On the complexity of reasoning in Kleene algebra. Information and
Computation 179(2) (2002) 152–162

13. Book, R.V., Otto, F.: String-Rewriting Systems. Springer-Verlag (1993)

12

Appendix – Omitted Proofs

Proof (Theorem 1). We consider the complement of the halting problem, the
problem NotHalting: Given a Turing machine M (or its index) and an in-
put u (which is a natural number), does M diverge on input u? The problem
NotHalting is Π0

1 -complete, that is, co-r.e.-complete.

Define the Turing machine MH , which takes as input a triple of natural
numbers (n, u, t). The number n is interpreted as the index of a Turing machine
Mn, the number u is meant to be given as input to Mn, and t is a timeout.
In order to encode (n, u, t) as a string, we take as input alphabet the set Σ =
{a, b, c,#}. We encode (n, u, t) as the string an#bu#ct. We describe now the
algorithm that MH implements. Let x be the input.

– If the string input is not of appropriate form then halt. If it is of the form
an#bu#ct, then set n, u, t appropriately.

– From the index n compute the description of the Turing machineMn. Mod-
ify the machine to take a second input t (in addition to input u), which
has the role of a timeout. The modified machine counts steps and if step
t is reached before halting normally, then it halts with a special indication
‘timeout’. Call this machine M′n.

– Simulate the execution M′n(u, t). If this terminates normally, then diverge
(enter an infinite loop). If it terminates with ‘timeout’, then halt.

Now, notice the equivalences:

the pair (n, u) belongs to NotHalting ⇐⇒
Mn diverges on input u ⇐⇒
∀t. M′n terminates with ‘timeout’ on input (u, t) ⇐⇒
∀t. MH halts on input (n, u, t)

It is shown in [12] that for every Turing machine M, there exists a finitely
presented monoid ∆∗/E, which intuitively encodes the computations of the ma-
chine. For every input string x there exists an effectively computable equation
e1;x; e2 ≡ e such that M halts on input x iff ∆∗/E |= e1;x; e2 ≡ e. All e1, e2, e
are strings.

Suppose now that the monoid M = ∆∗/E is the one corresponding to the
machine MH . The pair (n, u) belongs to NotHalting iff for every t, the ma-
chine MH halts on input an#bu#ct iff

RegM,RM |= e1; an#bu#ct; e2 ≡ e, for all t ≥ 0 ⇐⇒
RegM,RM |= e1; an#bu#ct; e2 ≤ e, for all t ≥ 0 ⇐⇒
RegM,RM |= e1; an#bu#c∗; e2 ≤ e.

The last statement says that the equation e1; an#bu#c∗; e2 ≤ e belongs to the
equational theory of Reg (∆∗/E). Assume now for contradiction that this equa-
tional theory is recursively enumerable. Since NotHalting reduces to it, then
NotHalting is also recursively enumerable. But NotHalting is co-r.e. and
therefore decidable. This contradicts the fact that it is co-r.e.-hard. We have thus
shown that the equational theory of Reg (∆∗/E) is not recursively enumerable.

13

Remark 1. Let R be a string rewrite system that has rules of the form a→ r,
where a is a single letter. Let xy be a string. Every R-descendant of xy is of the
form uv, where u (v) is an R-descendant of x (y). This can be expressed with the
equation DescR(xy) = DescR(x) · DescR(y). Using this property, we can prove
its generalization DescR(L1 · L2) = DescR(L1) · DescR(L2) to sets of strings.

Proof (Remark 1). The proof for the first claim

DescR(xy) = DescR(x) · DescR(y)

is by a straightforward induction on the number of rule applications. The base
case of no rule application is obvious. Suppose now that xy →∗R uv with u ∈
DescR(x) and v ∈ DescR(y). Assume for the induction step that a rule a→ r is
further applied on a letter of u (similarly for v). So, u →R u′ for some u′ and
uv →R u

′v. Notice that u′ is an R-descendant of x. For the second part, we have

DescR(L1 · L2) = DescR({xy | x ∈ L1, y ∈ L2})
=
⋃
x∈L1,y∈L2

DescR(xy)

=
⋃
x∈L1,y∈L2

DescR(x) · DescR(y)

= DescR(L1) · DescR(L2).

Proof (Lemma 1). The proof is by induction on the structure of e. Notice that
there is no rule that can rewrite the empty string, therefore the only descendant
of ε is ε. For the base cases we have:

DescR(R(a)) = DescR({a}) = R(ea) = R(θ(a))

DescR(R(1)) = DescR({ε}) = {ε} = R(1) = R(θ(1))

DescR(R(0)) = DescR(∅) = ∅ = R(0) = R(θ(0))

For the case e1 + e2 we have:

DescR(R(e1 + e2)) = DescR(R(e1) ∪R(e2))

= DescR(R(e1)) ∪ DescR(R(e2))

= R(θ(e1)) ∪R(θ(e2))

= R(θ(e1) + θ(e2))

= R(θ(e1 + e2))

For the case e1; e2 we use the equation shown in Remark 1 to obtain:

DescR(R(e1; e2)) = DescR(R(e1) · R(e2))

= DescR(R(e1)) · DescR(R(e2))

= R(θ(e1)) · R(θ(e2))

= R(θ(e1); θ(e2))

= R(θ(e1; e2))

We handle now the case e∗. We claim that

DescR(R(e)n) = R(θ(e))n.

14

We argue by induction on n. For the base case, we have DescR(R(e)0) = DescR({ε}) =
{ε} = R(θ(e))n. For the step we have:

DescR(R(e)n+1) = DescR(R(e)n · R(e))

= DescR(R(e)n) · DescR(R(e))

= R(θ(e))n · R(θ(e))

= R(θ(e))n+1.

Finally, we obtain

DescR(R(e∗)) = DescR(
⋃
n≥0R(e)n)

=
⋃
n≥0 DescR(R(e)n)

=
⋃
n≥0R(θ(e))n,

which is equal to R(θ(e)∗) = R(θ(e∗)).

Proof (Lemma 2). We will be dropping the R subscripts freely for notational
convenience. We show part (1). Using the fact u ↔∗R rd(u), we have that [u] =
[rd(u)] and therefore

CR(L) =
⋃
u∈L[u] =

⋃
u∈L[rd(u)] =

⋃
v∈GR(L)[v],

which establishes part (1).
We show part (2). The left-to-right direction is easy. Suppose that G (L1) =

G (L2). Then,

C (L1) =
⋃
v∈G (L1)

[v] =
⋃
v∈G (L2)

[v] = C (L2).

For the right-to-left direction, it suffices by symmetry to show that C (L1) ⊆
C (L2) implies G (L1) ⊆ G (L2). Suppose that C (L1) ⊆ C (L2), and let rd(u1) ∈
G (L1), where u1 ∈ L1. We have that [u1] ⊆ C (L1) ⊆ C (L2) and therefore
rd(u1) ∈ C (L2). There exists u2 ∈ L2 such that rd(u1) ∈ [u2], and hence
rd(u1)↔∗R u2. We conclude that rd(u1) = rd(u2) is in G (L2).

We show part (3). First, we see that Ance(Desc(L)) is contained in C (L). If
u ∈ Ance(Desc(L)), then there is v ∈ Desc(L) with u→∗R v. There is also u′ ∈ L
with u′ →∗R v. It follows that u ↔∗R v and u′ ↔∗R v, therefore u ↔∗R u′. We
thus obtain u ∈ [u′] ⊆ C (L). For the reverse containment, consider an arbitrary
element u of C (L). There exists u′ ∈ L with u ∈ [u′], that is, u ↔∗R u′. But
then we have that v = rd(u) = rd(u′). So, v is a descendant of both u and u′.
Now, notice that v ∈ Desc(L) and since u is an ancestor of v, we conclude that
u ∈ Ance(Desc(L)).

Proof (Theorem 2). In [11] it is shown how an arbitrary regular expression can
be brought in “automaton form”. The automaton is possibly nondeterministic
and may have epsilon transitions. So, for the expression e there is a form u;M∗; v
with KA ` e ≡ u;M∗; v, where u is a 1×n matrix, M is a n×n matrix, and v is
a n× 1 matrix. The matrix M is of the form M = M(ε) +

∑
a a ·M(a), where a

ranges over the alphabet Σ and a · − denotes scalar multiplication. Each n× n
matrix M(a) encodes the transitions of the automaton on input symbol a. The
entries of M(a) are either 0 or 1, hence the entries of a ·M(a) are either 0 or a.

We will show in KAR that for a transformation step (as described in the
previous section) from the automaton u;M∗; v to the automaton u;N∗; v we

15

have that KAR ` u;M∗; v ≡ u;N∗; v. Suppose that ` → r is a rule of R,
` = `1`2 · · · `m, and there is an `-path from q0 to qn in the automaton:

q0
x1−→ q1

x2−→ · · · xn−1−→ qn−1
xn−→ qn,

with x1 · x2 · · ·xn−1 · xn = `. Since each qi−1
xi−→ qi is a transition of the

automaton, we have that

row(qi−1);M(xi); col(qi) ≡ 1.

The above equation says that the (qi−1, qi)-indexed entry of M(xi) is equal to
1. We write row(q) for the row vector that contains 1 at the q-indexed position
and 0 in the rest of the positions. Similarly, col(q) is the column vector with
1 at position q and 0 elsewhere. It is easy to see that row(q); col(q) ≡ 1, and
col(qi); row(qj) is equal to the matrix with 1 at position (qi, qj) and 0 elsewhere.
So, the inequality

col(qi−1); row(qi) ≤M(xi)

is another way of expression the fact that qi−1
xi−→ qi is a transition of the

automaton. We define N(a) so that N(a) ≡M(a)+col(q0); row(qn). This means
that N = M + a · col(q0); row(qn). Since M ≤ N , it follows by monotonicity of
∗ that M∗ ≤ N∗ and hence u;M∗; v ≤ u;N∗; v.

Now, we have to show that u;N∗; v ≤ u;M∗; v, which is implied by N∗ ≤
M∗. In order to make our exposition more understandable, we give the proof
using a specific example. Suppose we have the rule ` → a, where ` = ab, and

the `-path we consider is q0
a−→ q1

ε−→ q2
b−→ q3. We add the transition q0

a−→
q3 to the automaton. So, N(a) ≡ M(a) + col(q0); row(q3), and N ≡ M + a ·
col(q0); row(q3). Notice:

a · col(q0); row(q3) ≡
a · col(q0); row(q1); col(q1); row(q3) ≡
a · col(q0); row(q1); col(q1); row(q2); col(q2); row(q3) ≤
a ·M(x1);M(x2);M(x3) ≡
a; b ·M(a);M(ε);M(b) ≡
aM(a);M(ε); bM(b),

which is ≤ M ;M ;M . It follows that N ≤ M + M ;M ;M , and therefore N∗ ≤
(M +M ;M ;M)∗ ≤M∗.

If the original automaton form is u;M∗0 ; v, the descendants construction gives
us a finite sequence of forms u;M∗0 ; v, u;M∗1 ; v, . . . , u;M∗k ; v with

KAR ` u;M∗0 ; v ≡ u;M∗1 ; v ≡ · · · ≡ u;M∗k ; v.

No new transition can be added to the last automaton. So, the last automaton
form of the sequence gives us all the descendants of R(e). That is, R(u;M∗k ; v) =
DescR(R(u;M∗0 ; v)) = DescR(R(e)), because KA ` e ≡ u;M∗0 ; v. We put ê =
u;M∗k ; v, and the proof is complete.

Proof (Lemma 3). We show part (1). The proof is by induction on the structure
of e. For the bases cases we have R(a) = {a}, R(0) = ∅, R(1) = {ε}, and

16

therefore

G(a) = {a} = {rd(a)} = {rd(u) | u ∈ R(a)}
G(0) = ∅ = {rd(u) | u ∈ R(0)}
G(1) = {ε} = {rd(ε)} = {rd(u) | u ∈ R(1)}

For the cases of choice and composition we have:

G(e1 + e2) = G(e1) ∪ G(e2)

= {rd(u) | u ∈ R(e1)} ∪ {rd(u) | u ∈ R(e2)}
= {rd(u) | u ∈ R(e1) ∪R(e2)}
= {rd(u) | u ∈ R(e1 + e2)}

G(e1; e2) = G(e1) � G(e2)

= {u � v | u ∈ G(e1), v ∈ G(e2)}
= {rd(x) � rd(y) | x ∈ R(e1), y ∈ R(e2)}
= {rd(rd(x)rd(y)) | x ∈ R(e1), y ∈ R(e2)}
= {rd(xy) | x ∈ R(e1), y ∈ R(e2)}
= {rd(z) | z ∈ R(e1; e2)}

We handle now the case e∗. First, we claim that

G(e)〈n〉 = {rd(u) | u ∈ R(e)n}.
We show the claim by induction on n. For the base case, we have that R(e)0 =
{ε} and therefore G(e)〈0〉 = {ε} = {rd(ε)} = {rd(u) | u ∈ R(e)0}. For the step,
we have:

G(e)〈n+1〉 = G(e)〈n〉 �G(e)

= {u � v | u ∈ G(e)〈n〉, v ∈ G(e)}
= {rd(x) � rd(y) | x ∈ R(e)n, y ∈ R(e)}
= {rd(xy) | x ∈ R(e)n, y ∈ R(e)}
= {rd(z) | z ∈ R(e)n+1}

Finally, we have for the expression e∗ that

G(e∗) =
⋃
n≥0G(e)〈n〉

=
⋃
n≥0{rd(u) | u ∈ R(e)n}

= {rd(u) | u ∈
⋃
n≥0R(e)n}

= {rd(u) | u ∈ R(e∗)},
thus completing the proof.

Now, using the definition of C(·), Lemma 2(1), and part (1) of this lemma
we have that:

C(e) = CR(R(e)) =
⋃
v∈GR(R(e))[v] =

⋃
v∈G(e)[v],

which establishes part (2).
We show part (3). Part (1) says that G(ei) = GR(R(ei)). By definition of C(ei)

we have that C(ei) = CR(R(ei)). So, by Lemma 2(2) we obtain the equivalences:
G(e1) = G(e2) iff GR(R(e1)) = GR(R(e2)) iff CR(R(e1)) = CR(R(e2)) iff C(e1) =
C(e2).

17

Proof (Theorem 3). Consider the following transformation steps on a regular
expression e:

(1) Descendants: As described in Theorem 2 we get an expression e′ with KAR `
e ≡ e′ and R(e′) = DescR(R(e)).

(2) Ancestors: We describe below a transformation that gives us a new regular
expression e′′ with KAR ` e′ ≡ e′′ and R(e′′) = AnceR(R(e′)).

We have KAR ` e ≡ e′′ and R(e′′) = AnceR(DescR(R(e))), which is equal to
CR(R(e)) by Lemma 2(3). It follows that R(e′′) = CR(e).

We apply the above constructions to the expressions e1 and e2 to obtain the
expressions e′′1 and e′′2 with:

KAR ` e1 ≡ e′′1 CR(e1) = R(e′′1)

KAR ` e2 ≡ e′′2 CR(e2) = R(e′′2)

From the hypothesisRM (e1) = RM (e2) we have that GR(e1) = GR(e2). Lemma 3
(part 3) then gives us that CR(e1) = CR(e2). So, R(e′′1) = R(e′′2) and by com-
pleteness of KA for the interpretation R we get that KA ` e′′1 ≡ e′′2 . Since we
have proved in KAR the equations

e1 ≡ e′′1 e′′1 ≡ e′′2 e′′2 ≡ e2
we conclude by transitivity that KAR ` e1 ≡ e2.

It remains to describe step (2) of the above transformation to complete the
proof. If u is an R-ancestor of a string v, then u is an R−1-descendant of v (and
conversely). Since R is well-behaved, the system R−1 only contains rules of the
form a→ r, where a is a letter. Moreover,

AnceR(a) = DescR−1(a) = R(ea)

for some regular expression ea with KAR ` ea ≡ a. Define the substitution θ by
a 7→ ea. Lemma 1 gives us that

AnceR(R(e′)) = DescR−1(R(e′)) = R(θ(e′)).

So, we put e′′ = θ(e′). We have already shown that R(e′′) = AnceR(R(e′)). It
remains to see that KAR ` e′ ≡ e′′ = θ(e′), which is implied by KAR ` ea ≡ a, for
each letter a. The last statement is part of our hypothesis that R is well-behaved.

Lemma 7. Suppose that (Σ,R,R⊥) satisfies Assumption 1.
1. The system R⊥ is confluent.
2. For x ∈ Σ∗: x ∼ ⊥ iff rdR(x) contains some z with z → ⊥ a rule of R⊥.
3. For x, y ∈ Σ∗, we have that x ∼ y iff (x ∼ ⊥ and y ∼ ⊥) or rdR(x) = rdR(y).
4. Σ∗ ∩ [⊥] = AnceR(Σ∗ · Z ·Σ∗), where Z = {z | z → ⊥ is a rule of R⊥}.
5. (Σ ∪ {⊥})∗/∼ is isomorphic to Σ∗/∼ = {Σ∗ ∩ [u] | u ∈ (Σ ∪ {⊥})∗}.

Notation: We write ∼ instead of ↔∗R⊥ , and [x] for the ∼-class of x.

Proof (Lemma 7). We show part (1). Since R⊥ is terminating, it suffices to
establish local confluence of R⊥. So, we suppose that x→R⊥ y1 and x→R⊥ y2.
• If both y1 and y2 contain an occurrence of ⊥, then we have y1 →∗R⊥ ⊥ and

y2 →∗R⊥ ⊥.
• If neither of y1, y2 contains an occurrence of ⊥, then by confluence of R there

exists y′ ∈ Σ∗ with y1 →∗R y′ and y2 →∗R y′. So, y1 →∗R⊥ y
′ and y2 →∗R⊥ y

′.

18

• Suppose now that y1 contains an occurrence of ⊥, but y2 does not. It follows
that x does not contain any ⊥ (if it did, then so would y2). Moreover, x is of
the form x = x1zx2 for some z with z → ⊥ being a rule of R⊥, and

x = x1zx2 −→R⊥ x1⊥x2 = y1.

The string y2 is an R-successor of x, and by the seamlessness property we
have that y2 is of the form y2 = x′1z

′x′2 for some z′ → ⊥ in R⊥. It follows that
y1 = x1⊥x2 →∗R⊥ ⊥ and y2 = x′1z

′x′2 →R⊥ x
′
1⊥x′2 →∗R⊥ ⊥.

The case of y2 containing ⊥ and y1 not containing any ⊥ is symmetric.
Since both R and R⊥ are confluent and terminating, the functions rdR and

rd⊥ are well-defined. We know that for all x, y ∈ (Σ ∪ {⊥})∗,
x ∼ y ⇐⇒ rd⊥(x) = rd⊥(y).

The above equivalence is a consequence of termination and the Church-Rosser
property of R⊥.

Part (2): Let x ∈ Σ∗. Since ⊥ is R⊥-irreducible, it holds that x ∼ ⊥ iff
rd⊥(x) = ⊥. It remains to see that rd⊥(x) = ⊥ iff rdR(x) contains some z with
z → ⊥. The right-to-left direction is obvious, because

x→∗R rdR(x) = x1zx2 →R⊥ x1⊥x2 →∗R⊥ ⊥.
For the left-to-right direction, we observe that x→∗R⊥ rd⊥(x) = ⊥ and also that

x →∗R⊥ rdR(x). By confluence of R⊥, it must be that rdR(x) →∗R⊥ ⊥. If rdR(x)
contains no z with z → ⊥, then rdR(x) is R⊥-irreducible and it is 6= ⊥. So, it
must contain such a substring z.

Part (3): The right-to-left direction of part (3) is trivial. Suppose now that
x ∼ y and that x, y are not ∼-congruent to ⊥. So, both rdR(x) and rdR(y)
must contain no z with z → ⊥ (otherwise they would be ∼-congruent to ⊥). It
follows that rdR(x) and rdR(y) are R⊥-irreducible. Therefore, rd⊥(x) = rdR(x)
and rd⊥(y) = rdR(y). Now, x ∼ y implies that rd⊥(x) = rd⊥(y), and hence
rdR(x) = rdR(y).

Part (4): Let x ∈ Σ∗ be a string in the right-hand side. There is a string
y1zy2 in Σ∗·Z ·Σ∗ with z → ⊥ and x→∗R y1zy2. But y1zy2 →R⊥ y1⊥y2 →∗R⊥ ⊥.

It follows that x→∗R⊥ ⊥. So, x ∈ Σ∗∩ [⊥]. For the reverse containment, suppose

that x ∈ Σ∗ and x ∼ ⊥. From part (2) we have that rdR(x) ∈ Σ∗ · Z ·Σ∗. But
x is an R-ancestor of rdR(x), and therefore x belongs to the right-hand size.

Part (5): We claim that the map [u] 7→ Σ∗ ∩ [u], where u is a string over
Σ∪{⊥}, is an isomorphism. The map is clearly surjective. It remains to see that
it is injective. Suppose that Σ∗ ∩ [u] = Σ∗ ∩ [v]. If this is also equal to ∅, then
both u and v contain an occurrence of ⊥, and hence [u] = [v] = [⊥]. Assume now
that Σ∗ ∩ [u] = Σ∗ ∩ [v] 6= ∅. It follows that there exists some string w ∈ Σ∗
with w ∼ u and w ∼ v. So, u ∼ v and therefore [u] = [v].

Lemma 8. Suppose that (Σ,R,R⊥) satisfies Assumption 1.
1. CR⊥(L) = [⊥]Σ ∪

⋃
{[v]Σ | v ∈ GR⊥(L)}, for a language L ⊆ Σ∗.

2. GR⊥(L1) = GR⊥(L2) iff CR⊥(L1) = CR⊥(L2), for languages L1, L2 ⊆ Σ∗.
3. CR⊥(L) = AnceR(DescR(L)) ∪ [⊥]Σ , for a language L ⊆ Σ∗.

The above are the analogue of Lemma 2. As an analogue of Lemma 3, we have:
(a) GR⊥(e) = {rdR(u) | u ∈ R(e)} \ [⊥]Σ = GR⊥(R(e)), for an expression e.

19

(b) CR⊥(e) = [⊥]Σ ∪
⋃
{[v] | v ∈ GR⊥(e)}, for an expression e.

(c) GR⊥(e1) = GR⊥(e2) iff CR⊥(e1) = CR⊥(e2), for expressions e1, e2.

Proof (Lemma 8). We will be dropping the R⊥ subscripts freely for notational
convenience.

We show part (1). Since u ∼ rd(u), we have [u] = [rd(u)] and hence [u]Σ =
[rd(u)]Σ . Now,

C (L) = [⊥]Σ ∪
⋃
u∈L[u]Σ

= [⊥]Σ ∪
⋃
u∈L,u 6∼⊥[u]Σ

= [⊥]Σ ∪
⋃
u∈L,u 6∼⊥[rd(u)]Σ

= [⊥]Σ ∪
⋃
v∈G (L)[v]Σ ,

which establishes part (1).

We show part (2). The left-to-right direction is easy. Suppose that G (L1) =
G (L2). Using part (1), we get that

C (L1) = [⊥]Σ ∪
⋃
v∈G (L1)

[v]Σ = [⊥]Σ ∪
⋃
v∈G (L2)

[v]Σ = C (L2).

For the right-to-left direction, it suffices by symmetry to show that C (L1) ⊆
C (L2) implies G (L1) ⊆ G (L2). Suppose that C (L1) ⊆ C (L2), and let rd(u1) ∈
G (L1), where u1 ∈ L1 and u1 6∼ ⊥. We have that [u1]Σ ⊆ C (L1) ⊆ C (L2)
and therefore rd(u1) ∈ C (L2). There exists u2 ∈ L2 such that rd(u1) ∈ [u2]Σ ,
and hence rd(u1) ∼ u2. Moreover, it holds that u2 6∼ ⊥, because u2 ∼ ⊥ would
imply rd(u1) ∼ u1 ∼ ⊥, a contradiction. Using Lemma 7 we conclude that
rd(u1) = rd(u2) is in G (L2).

Finally, we show part (3). Immediately from the definition of C (L) we know
that [⊥]Σ ⊆ C (L). Now, we see that AnceR(DescR(L)) is contained in C (L).
Suppose that u is in AnceR(DescR(L)). Then, u ∈ Σ∗ and there is v ∈ DescR(L)
with u →∗R v. There is also u′ ∈ L with u′ →∗R v. It follows that u ↔∗R v and
u′ ↔∗R v, therefore u↔∗R u′. So, u ∼ u′. We thus obtain u ∈ [u′]Σ ⊆ C (L).

For the reverse containment of part (3), consider an arbitrary element u
of C (L). If u ∼ ⊥ then we are done. Assume now that u 6∼ ⊥. There exists
u′ ∈ L with u ∈ [u′]Σ , that is, u ∼ u′, and u′ 6∼ ⊥. But then we have that
v = rd(u) = rd(u′) (Lemma 7). So, v is a descendant of both u and u′. Now,
notice that v ∈ DescR(L) and since u is an ancestor of v, we conclude that
u ∈ AnceR(DescR(L)).

We show part (a) by induction on the structure of e. For the bases cases we
have:

G⊥(a) = {rd(a)} \ [⊥]Σ = {rd(u) | u ∈ R(a)} \ [⊥]Σ

G⊥(0) = ∅ = {rd(u) | u ∈ R(0)} \ [⊥]Σ

G⊥(1) = {rd(ε)} \ [⊥]Σ = {rd(u) | u ∈ R(1)} \ [⊥]Σ

20

For the case of nondeterministic choice we have:

G⊥(e1 + e2) = G⊥(e1) ∪ G⊥(e2)

= {rd(u) | u ∈ R(e1)} \ [⊥]Σ ∪
{rd(u) | u ∈ R(e2)} \ [⊥]Σ

= {rd(u) | u ∈ R(e1) ∪R(e2)} \ [⊥]Σ

= {rd(u) | u ∈ R(e1 + e2)} \ [⊥]Σ .

For strings x, y ∈ Σ∗, it holds that xy ∼ rd(x)rd(y). It follows that xy ∼ ⊥ iff
rd(x)rd(y) ∼ ⊥. Moreover, xy 6∼ ⊥ implies that x 6∼ ⊥ and y 6∼ ⊥ (because ∼ is
congruence). For the case of composition we have that G⊥(e1; e2) is equal to:

G⊥(e1) � G⊥(e2) =

{u � v | u � v def., u ∈ G⊥(e1), v ∈ G⊥(e2)} =

{rd(x) � rd(y) | rd(x) � rd(y) defined,

rd(x) ∈ G⊥(e1), rd(y) ∈ G⊥(e2)} =

{rd(rd(x)rd(y)) | rd(x)rd(y) 6∼ ⊥,

x ∈ R(e1), x 6∼ ⊥, y ∈ R(e2), y 6∼ ⊥} =

{rd(xy) | xy 6∼ ⊥, x ∈ R(e1), y ∈ R(e2)} =

{rd(z) | z ∈ R(e1; e2)} \ [⊥]Σ .

We handle now the case e∗. First, we claim that

G⊥(e)〈n〉 = {rd(u) | u ∈ R(e)n} \ [⊥]Σ .

We show the claim by induction on n. For the base case, we have that R(e)0 =
{ε} and therefore G⊥(e)〈0〉 = {ε} = {rd(ε)} = {rd(u) | u ∈ R(e)0} \ [⊥]Σ . For
the step, we have that G(e)〈n+1〉 is equal to:

G⊥(e)〈n〉 �G⊥(e) =

{u � v | u � v def., u ∈ G⊥(e)〈n〉, v ∈ G⊥(e)} =

{rd(xy) | xy 6∼ ⊥, x ∈ R(e)n, y ∈ R(e)} =

{rd(z) | z ∈ R(e)n+1} \ [⊥]Σ ,

arguing similarly to how we did in the composition case. Finally, we have for the
expression e∗ that

G⊥(e∗) =
⋃
n≥0G⊥(e)〈n〉

=
⋃
n≥0{rd(u) | u ∈ R(e)n} \ [⊥]Σ

= {rd(u) | u ∈
⋃
n≥0R(e)n} \ [⊥]Σ

= {rd(u) | u ∈ R(e∗)} \ [⊥]Σ ,

thus completing the proof of part (2).
Parts (b) and (c) follow from parts (1), (2), (a), and from the definition of

C⊥.

Proof (Lemma 4). The set Z is finite and hence regular. It follows that the
set Σ∗ · Z · Σ∗ is also regular, with e = U ; (

∑
z z);U being the corresponding

regular expression. The string z ranges over the set Z = {z | z → ⊥}, and U
is the universal expression. That is, U = (

∑
a a)∗, where a ranges over all the

letters of the alphabet Σ.

21

Since R is well-behaved, the inverse system R−1 has rules of the form a→ r,
where a is a letter of Σ. For every letter a we have by our hypotheses (R is
well-behaved) that

DescR−1(a) = AnceR(a) = R(ea)

for some regular expression ea. Moreover, KAR ` ea ≡ a. Define the substitution
θ by a 7→ ea. Lemma 1 gives us that

AnceR(R(e)) = DescR−1(R(e)) = R(θ(e)).

We put e⊥ = θ(e). From Lemma 7(4) we obtain that

Σ∗ ∩ [⊥] = AnceR(Σ∗ · Z ·Σ∗) = AnceR(R(e)),

which is equal to R(θ(e)) = R(e⊥). So, the set Σ∗ ∩ [⊥] = R(e⊥) is regular. In
order to show that KAR⊥ ` e⊥ = θ(e) ≡ 0, it suffices to see that KAR⊥ ` e ≡ 0.
Since z ≡ 0 for z → ⊥, we have

∑
z z ≡ 0 and therefore

e = U ; (
∑
z z);U ≡ 0.

We have thus shown that e⊥ ≡ 0 is provable in KAR⊥ .

Proof (Theorem 4). Consider the following transformations steps on an arbi-
trary regular expression e:

(1) Descendants: As described in Theorem 2 we get an expression e′ with KAR `
e ≡ e′ and R(e′) = DescR(R(e)).

(2) Ancestors: Define the substitution θ by a 7→ ea, where R(ea) = AnceR(a)
(this can be done because R is well-behaved). Then, KAR ` e′ ≡ θ(e′) and
R(θ(e′)) = AnceR(R(e′)).

(3) Congruence class of ⊥: It was shown in Lemma 4 that there is an expression
e⊥ such that KAR⊥ ` e⊥ ≡ 0 and R(e⊥) = [⊥]Σ . We put ê = θ(e′) + e⊥.

We have KAR⊥ ` e ≡ e′ ≡ θ(e′) ≡ θ(e′) + e⊥ = ê, and

R(ê) = R(θ(e′)) ∪R(e⊥) = AnceR(DescR(R(e))) ∪ [⊥]Σ ,

which is equal to CR⊥(R(e)) = CR⊥(e) using Lemma 8(3). We have thus shown
that R(ê) = CR⊥(e).

We apply the above constructions to the expressions e1 and e2 to obtain the
expressions ê1 and ê2 with:

KAR⊥ ` e1 ≡ ê1 CR⊥(e1) = R(ê1)

KAR⊥ ` e2 ≡ ê2 CR⊥(e2) = R(ê2)

From the hypothesis GR⊥(e1) = GR⊥(e2) and Lemma 8 we have that CR⊥(e1) =
CR⊥(e2). So, R(ê1) = R(ê2) and by completeness of KA for the interpretation
R(·) we get that KA ` ê1 ≡ ê2. Since we have proved in KAR⊥ the equations

e1 ≡ ê1 ê1 ≡ ê2 ê2 ≡ e2
we conclude by transitivity that KAR⊥ ` e1 ≡ e2.

Lemma 9. Suppose that (P, Id , R,R⊥) satisfies Assumption 2.
1. R⊥ is terminating on (Σ ∪ {⊥})∗ and confluent on S.
2. For x ∈ S: x ∼ ⊥ iff rdR(x) contains some z, where z → ⊥ is a rule of R⊥.
3. For x, y ∈ S, we have that x ∼ y iff (x ∼ ⊥ and y ∼ ⊥) or rdR(x) = rdR(y).

22

4. S ∩ [⊥] = AnceR(DescR(S · Z · S)), where Z = {z | z → ⊥ is a rule of R⊥}.

Proof (Lemma 9). The proof of the first three parts of the lemma are a straight-
forward adaptation of the proof given for Lemma 7.

We show now part (4). Suppose for x ∈ S that x ∼ ⊥. Then, rd(x) has some
substring z for which z → ⊥ is a rule of R⊥. Since x →∗R rd(x), it suffices to
show that rd(x) belongs to DescR(S ·Z ·S). We know that z ∈ S is a substring of
rd(x), and hence by the decomposition property rd(x) has an R-ancestor x1zx2
such that x1, x2 ∈ S. Since x1zx2 ∈ S · Z · S and x1zx2 →∗R rd(x), we obtain
that rd(x) ∈ DescR(S · Z · S).

For the reverse containment, let u be a string in the right-hand size of the
equation. There exists v such that u →∗R v and v ∈ DescR(S · Z · S). So, there
is w such that w →∗R v and w ∈ S · Z · S. From u →∗R v and w →∗R v we get
that u ↔∗R w and u ∼ w. Since w is of the form w = w1zw2 with z → ⊥, it
holds that w ∼ ⊥. Since Z ⊆ S and S is closed under concatenation, we have
that S · Z · S ⊆ S. It follows that w ∈ S. Since S is additionally closed under
→R and →−1R , we get that both v and u are in S. So, u ∼ ⊥ and u ∈ S.

Lemma 10. Let (P, Id , R,R⊥) be a tuple satisfying Assumption 2.

1. CR⊥(L) = [⊥]S ∪
⋃
{[v]S | v ∈ GR⊥(L)}, for a language L ⊆ S.

2. GR⊥(L1) = GR⊥(L2) iff CR⊥(L1) = CR⊥(L2), for languages L1, L2 ⊆ S.
3. CR⊥(L) = AnceR(DescR(L)) ∪ [⊥]S , for a language L ⊆ S.

The above are the analogue of Lemma 2. Moreover, we have:

(a) GR⊥(e) =
⋃
x∈R(e) GR⊥(x), for an expression e.

(b) GR⊥(e) = {rd(u) | u ∈ R(e)} \ [⊥]Σ = GR⊥(R(e)), for an expression e.
(c) CR⊥(e) =

⋃
{[v] | v ∈ GR⊥(e)}, for an expression e.

(d) GR⊥(e1) = GR⊥(e2) iff CR⊥(e1) = CR⊥(e2), for expressions e1, e2.

For the parts (2), (3), and (4) we have the implicit assumption that R(e), R(e1),
R(e2) are included in S. For a string a1a2 · · · an, we write GR⊥(a1a2 . . . an) to
mean GR⊥(a1; a2; · · · ; an). Moreover, GR⊥(ε) is notation for GR⊥(1).

Proof (Lemma 10). Parts (1) – (3) are essentially the same as in Lemma 8.

Suppose that e1, e2 are regular expressions satisfying G(ei) =
⋃
x∈R(ei)

G(x)
for i = 1, 2. It follows that

G(e1) �G(e2) =
(⋃

x∈R(e1)
G(x)

)
�
(⋃

y∈R(e2)
G(y)

)
=
⋃
x∈R(e1)

⋃
y∈R(e2)

G(x) �G(y)

=
⋃
z∈R(e1)·R(e2)

G(z).

=
⋃
z∈R(e1;e2)

G(z).

23

We show part (a) by induction on the structure of e. The base cases are straight-
forward. For the case of nondeterministic choice, we have:

G(e1 + e2) = G(e1) ∪G(e2)

=
(⋃

x∈R(e1)
G(x)

)
∪
(⋃

x∈R(e2)
G(x)

)
=
⋃
x∈R(e1)∪R(e2)

G(x)

=
⋃
x∈R(e1+e2)

G(x).

The case of composition is handled immediately by the claim we showed above.
For the case e∗, we first claim that

G(e)〈n〉 =
⋃
x∈R(e)n G(x).

We argue by induction on n. For the base case we have that G(e)〈0〉 = id and⋃
x∈R(e)0 G(x) = G(ε) = G(1) = id. For the step we use the claim shown above:

G(e)〈n+1〉 = G(e)〈n〉 �G(e)

=
(⋃

x∈R(e)n G(x)
)
�
(⋃

y∈R(e)G(y)
)

=
⋃
z∈R(e)n·R(e)G(z)

=
⋃
z∈R(e)n+1 G(z).

It follows that

G(e) =
⋃
n≥0G(e)〈n〉

=
⋃
n≥0

⋃
x∈R(e)n G(x)

=
⋃
x∈

⋃
n≥0R(e)n G(x),

which is equal to
⋃
x∈R(e∗)G(x).

For part (b), suppose that R(e) ⊆ S. For every x ∈ S, it holds that G⊥(x) =
{rd(x)} when x 6∼ ⊥, and G⊥(x) = ∅ when x ∼ ⊥. Then,

G⊥(e) =
⋃
x∈R(e) G⊥(x)

= {rd(x) | x ∈ R(e), x 6∼ ⊥},
which is equal to GR⊥(R(e)). Parts (c) and (d) follow easily from parts (1) – (3).

Proof (Lemma 5). For an atom α, we have GR⊥(α) = rdR({α}) \ [⊥]S = {α},
because the left-hand size of every rule has length ≥ 2. It follows that

GR⊥(
∑
α α) =

⋃
α GR⊥(α) = Id = GR⊥(1).

For an action letter p, we observe that

GR⊥(p) = rdR({αpβ | α, β}) \ [⊥]S

= {rdR(αpβ) | α, β} \ [⊥]S

= {rdR(αpβ) | α, β ∈ At , αpβ 6∼ ⊥}

24

Using confluence it can be shown that {α} �GR⊥(p) � {β} = {rdR(αpβ)} \ [⊥]S .
It follows that

GR⊥(
∑
α,β α; p;β) =

⋃
α,β GR⊥(α; p;β)

=
⋃
α,β GR⊥(α) � GR⊥(p) � GR⊥(β)

=
⋃
α,β{α} � GR⊥(p) � {β}

=
⋃
α,β{rdR(αpβ)} \ [⊥]S

= GR⊥(p).

With a straightforward induction argument we thus have GR⊥(e) = GR⊥(θ(e)),
for every expressions e. The rest of the claim follow easily.

Proof (Lemma 6). We have assumed S to be regular with S = R(eS). There
are finitely many rules of the form z → ⊥, and we put

eZ =
∑
{z | z → ⊥ is rule of R⊥}.

So, e = eS ; eZ ; eS is the regular expression for the regular set S ·Z ·S, and clearly
KAR⊥ ` e ≡ 0.
• Descendants: As described in Theorem 2 we get an expression e′ with KAR `
e ≡ e′ and R(e′) = DescR(R(e)).
• Ancestors: Define the substitution θ by a 7→ ea, where R(ea) = AnceR(a) (R

is well-behaved). Then, KAR ` e′ ≡ θ(e′) and R(θ(e′)) = AnceR(R(e′)).
We put ê = θ(e′). We have R(ê) = AnceR(DescR(S · Z · S)) and KAR⊥ ` ê ≡
e′ ≡ e ≡ 0.

Proof (Theorem 5). Using Lemma 5, we see that there are expressions ẽ1 and
ẽ2 such that KAE ` e1 ≡ ẽ1, KAE ` e2 ≡ ẽ2 and R(ẽ1),R(ẽ2) ⊆ S. Moreover,
GR⊥(ei) = GR⊥(ẽi) for i = 1, 2, and from our hypothesis GR⊥(ẽ1) = GR⊥(ẽ2). It
suffices to show that KAE ` ẽ1 ≡ ẽ2.

Consider the following transformations steps on an arbitrary regular expres-
sion e satisfying R(e) ⊆ S:

(1) Descendants & ancestors: As we have done in previous proofs, we can con-
struct an expression e′ with KAR ` e ≡ e′ and R(e′) = AnceR(DescR(R(e))).

(2) Congruence class of ⊥: It was shown in Lemma 6 that there is an expression
e⊥ such that KAR⊥ ` e⊥ ≡ 0 and R(e⊥) = [⊥]S . We put ê = e′ + e⊥.

We have KAR⊥ ` e ≡ e′ ≡ e′ + e⊥ = ê, and

R(ê) = R(e′) ∪R(e⊥) = AnceR(DescR(R(e))) ∪ [⊥]S ,

which is equal to CR⊥(R(e)) = CR⊥(e) using Lemma 10. We have thus shown
that R(ê) = CR⊥(e).

We apply the above constructions to the expressions ẽ1 and ẽ2 to obtain the
expressions ê1 and ê2 with:

KAE ` ẽ1 ≡ ê1 CR⊥(ẽ1) = R(ê1)

KAE ` ẽ2 ≡ ê2 CR⊥(ẽ2) = R(ê2)

From GR⊥(ẽ1) = GR⊥(ẽ2) and Lemma 10 we have that CR⊥(ẽ1) = CR⊥(ẽ2). So,
R(ê1) = R(ê2) and by completeness of KA for the interpretation R we get that
KA ` ê1 ≡ ê2. It follows that KAE ` ẽ1 ≡ ẽ2, which completes the proof.

25

Proof (Theorem 6). We denote by P the set of the action letters. We write At
for the set of subidentities, which we are called atoms in the case of KAT. We
write Σ for the union of P and At . The rewrite systems R and R⊥ contain only
the rules stipulated in Assumption 2.

αα→ α (α ∈ At) αβ → ⊥ (α 6= β)

a⊥ → ⊥,⊥a→ ⊥ (a ∈ Σ) ⊥⊥ → ⊥
Recall that S ⊆ Σ∗ is the set of non-empty strings over Σ, in which every action
symbol p appears surrounded by atoms, as in αpβ. The set S is closed under
→R, because R only collapses consecutive identical atoms. It is also closed under
→−1R , because the inverse system of R creates a consecutive copy of an atom.
For example αpβ →−1R ααpβ. Every rule of R strictly reduces the length of the
string. To prove that R is confluent on S, it suffices to establish local confluence,
since R is terminating. The proof is similar to the one we gave in Example 1.

Seamlessness property : Suppose that xαβy is in S, and αβ → ⊥. If an R-rule
is applied to x or y, then we are done. Suppose that x = x′α and we have the
rewrite step x′ααβy →R x′αβy. The only remaining case is when y = βy′ and
we have the rewrite step xαββy′ →R xαβy

′. So, the property holds.
The irreducibles (R⊥-irreducible strings of S) are the guarded strings over P

and At , that is, strings of the form α0p1α1p2 · · ·αn−1pnαn, where n ≥ 0. The
fusion product � of irreducibles is given by

xα � βy =

{
xαy, if α = β;

undefined, if α 6= β.

The set [⊥]S is equal to {x ∈ S | x has some αβ as substring with α 6= β}. The
interpretation GR⊥ is the standard interpretation GKAT of KAT terms as sets of
guarded strings.

Now, we verify that the tuple (P,At , R,R⊥) is well-behaved. First, notice
that R⊥ has finitely many rules, because the set At of atoms is finite. The right-
hand side of every rule αα → α of R is a single letter. For every atom α, the
R-ancestors of α are AnceR(α) = {αi | i ≥ 1}. We put eα = α+, and we claim
that KAR ` eα ≡ α. The proof is as in Example 1. For every atomic action p,
the R-ancestors of p are AnceR(p) = {p}. The associated equations E are:∑

α∈At α ≡ 1 α;α ≡ α (α ∈ At) α;β ≡ 0 (α 6= β)

We write KAT instead of KAE . Suppose that GKAT(e1) = GKAT(e2), which is the
same as GR⊥(e1) = GR⊥(e2). From Theorem 5 we obtain that KAT ` e1 ≡ e2.

Proof (Theorem 7). The language involves an alphabet P of action letters, and
an alphabet At of atoms. We write Σ for the union of P and At . We define the
rewrite systems R and R⊥ to contain the following rules: αα → α for every
α ∈ At , and

αβ → ⊥ (α 6= β) γpδ → ⊥ (γpδ ∈ Zh)

a⊥ → ⊥,⊥a→ ⊥ (a ∈ Σ) ⊥⊥ → ⊥
Recall that S ⊆ Σ∗ is the set of non-empty strings over Σ, in which every
action symbol p appears surrounded by atoms, as in αpβ. The set S is closed
under→R and→−1R . Every rule of R strictly reduces the length of the string. To

26

prove that R is confluent on S, it suffices to establish local confluence, since R
is terminating. The seamlessness property holds, which is proved as in the case
of KAT.

The irreducibles are guarded strings, that contain no occurrence of a sub-
string γpδ ∈ Zh. The fusion product � is given as in the case of KAT. The
set [⊥]S is equal to {x ∈ S | x has a substring αβ with α 6= β, or γpδ ∈ Zh}. A
straightforward induction on the structure of e establishes that GR⊥(e) = Gh(e).

We verify that the tuple (P,At , R,R⊥) is well-behaved. The system R⊥ has
finitely many rules, because At and Zh are finite. The rest of the requirements
are shown to hold as in the case of KAT. Now, E is the collection of equations:∑

α∈At α ≡ 1 α;α ≡ α (α ∈ At)

α;β ≡ 0 (α 6= β) γ; p; δ ≡ 0 (γ; p; δ ∈ Zh)

We write KAT + H instead of KAE . Suppose that Gh(e1) = Gh(e2), that is,
GR⊥(e1) = GR⊥(e2). It follows from Theorem 5 that KAT +H ` e1 ≡ e2.

Proof (Theorem 8). The language involves an alphabet P of action letters, and
an alphabet At of atoms. We write Σ for the union of P and At . We define the
rewrite systems R and R⊥ to contain the following rules:

αα→ α (α ∈ At) αβ → ⊥ (α 6= β)

γpγ → γ (γp ∈ X) γpδ → ⊥ (γp ∈ X, γ 6= δ)

a⊥ → ⊥,⊥a→ ⊥ (a ∈ Σ)

⊥⊥ → ⊥
Recall that S ⊆ Σ∗ is the set of non-empty strings over Σ, in which every
action symbol p appears surrounded by atoms, as in αpβ. The set S is closed
under →R and →−1R . Every rule of R strictly reduces the length of the string.
To prove that R is confluent on S, it suffices to establish local confluence, since
R is terminating. The only interesting cases are the following for γp, γq in X:

xγγpγy

xγpγy xγγy

xγy

xγpγqγy

xγqγy xγpγy

xγy

To see that the seamlessness property holds, observe the following cases:

xααβy → xαβy if αp ∈ X : xαpαβy → xαβy

xαββy → xαβy if βp ∈ X : xαβpβy → xαβy

if γp ∈ X, γ 6= δ : xγγpδy → xγpδy if γp, γq ∈ X, γ 6= δ : xγqγpδy → xγpδy

if γp ∈ X, γ 6= δ : xγpδδy → xγpδy if γp, δq ∈ X, γ 6= δ : xγpδqδy → xγpδy

The irreducibles are guarded strings, that contain no occurrence of a substring
γp ∈ X. The fusion product � is given as in the case of KAT. The set [⊥]S is
equal to {x ∈ S | x has a substring αβ with α 6= β, or γpδ with γp ∈ X, γ 6= δ}.
By induction on the structure of e, we can show that GR⊥(e) = Gh(e).

We verify that the tuple (P,At , R,R⊥) is well-behaved. The system R⊥ has
finitely many rules, because At and X are finite. Let α be an arbitrary atom, and

27

define Bα = {p | αp ∈ X} = {p1, . . . , pk}. The R-ancestors of α form a regular
set equal to R(eα), where eα = (α+; (p1 + · · ·+ pk))∗;α+. We have already seen
in Example 1 how to establish that KAR ` α+ ≡ α. It follows that:

KAR ` eα ≡ (α; (p1 + · · ·+ pk))∗;α ≡ (α; p1 + · · ·+ α; pk)∗;α.
Reasoning in KAR, we see that α ≤ (α; p1 + · · ·+ α; pk)∗;α, and also that

(α; p1 + · · ·+ α; pk)∗;α ≤ α⇐= (α; p1 + · · ·+ α; pk);α ≤ α,
which holds because every α; pi;α ≡ α is an axiom in R. Now, E is the collection
of equations:∑

α∈At α ≡ 1 γ; p; γ ≡ γ (γp ∈ X)

α;α ≡ α (α ∈ At) γ; p; δ ≡ 0 (γp ∈ X, γ 6= δ)

α;β ≡ 0 (α 6= β)

We observe that KAT + H can prove the equations E. Indeed for γp ∈ X, we
have that γ; p; γ ≡ γ; γ ≡ γ and γ; p; δ ≡ γ; δ ≡ 0 (γ 6= δ). Suppose that
Gh(e1) = Gh(e2), that is, GR⊥(e1) = GR⊥(e2). It follows from Theorem 5 that
KAE ` e1 ≡ e2. So, KAT +H ` e1 ≡ e2.

Lemma 11. Consider the language P, dup,At of NetKAT. Given the axioms of
Kleene algebra, the group of axioms∑

α∈At α ≡ 1 α; dup ≡ dup;α pα ≡ pα;α

α;β ≡ 0 (α 6= β) pα; pβ ≡ pβ α ≡ α; pα
is equivalent to the group of axioms∑

α∈At α ≡ 1 α;α ≡ α α; pα;α ≡ α α; dup;β ≡ 0 (α 6= β)

α;β ≡ 0 (α 6= β) pα;α; pβ ≡ pβ α; pβ ; γ ≡ 0 (β 6= γ)

Proof. We first show that KA and the axioms of the first group can prove the
axioms of the second group:

α;α ≡ α; pα;α ≡ α; pα ≡ α
α; pα;α ≡ α; pα ≡ α
pα;α; pβ ≡ pα; pβ ≡ pβ
α; dup;β ≡ dup;α;β ≡ dup; 0 ≡ 0 (α 6= β)

α; pβ ; γ ≡ α; pβ ;β; γ ≡ α; pβ ; 0 ≡ 0 (β 6= γ)

Now, we show that KA and the axioms of the second group can prove the axioms
of the first group:

α; dup ≡
∑
β α; dup;β ≡ α; dup;α+

∑
β 6=α α; dup;β ≡ α; dup;α

dup;α ≡
∑
β β; dup;α ≡ α; dup;α+

∑
β 6=α β; dup;α ≡ α; dup;α

and therefore α; dup ≡ dup;α. Now:

pα; pβ ≡
∑
γ (
∑
δ γ; pα; δ; pβ) ≡

∑
γ

(
γ; pα;α; pβ +

∑
δ 6=α γ; pα; δ; pβ

)
≡
∑
γ γ; pα;α; pβ ≡

∑
γ γ; pβ ≡ pβ

pα ≡
∑
β

(∑
γ β; pα; γ

)
≡
∑
β

(
β; pα;α+

∑
γ 6=α β; pα; γ

)
≡
∑
β β; pα;α ≡ pα;α

28

α; pα ≡
∑
β α; pα;β ≡ α; pα;α+

∑
β 6=α α; pα;β ≡ α; pα;α ≡ α

Proof (Theorem 9). Let Σ be the union of P , {dup}, and At . The set S ⊆ Σ∗
contains the non-empty strings over Σ, in which every action symbol (pα or
dup) appears surrounded by atoms. The set S is closed both under →R and
→−1R . Every rule of R is length reducing. Since R is terminating, we only need
to show local confluence in order to establish confluence. Consider, for example,
the cases:

xααpααy

xαpααy xααy

xαy

xαpαααy

xααy xαpααy

xαy

xαpααpβy

=xαpβy xαpβy

xpααpααy

=xpααy xpααy

For all the rules of the form z → ⊥, the left-hand size contains at least two letters.
We have to verify that the seamlessness property holds. The only interesting case
is the following:

if γ 6= δ : xαpβ βpγδ︸ ︷︷ ︸
⊥

y →R xαpγδ︸ ︷︷ ︸
⊥

y

The rewrite system R⊥ consists of finitely many rules, because the set At is
finite. The right-hand side of every rule is a single letter.

The R-ancestors of the action symbol pβ form the regular set R(epβ), where
epβ = (

∑
α∈At pα;α+)∗; pβ . As in Example 1, we can show that KAR ` α+ ≡ α

for every atom α. Reasoning in KAR, we see that epβ ≡ (
∑
α pα;α)∗; pβ and

pβ ≤ epβ . To prove epβ ≤ pβ , it suffices to show:

(
∑
α pα;α)∗; pβ ≤ pβ ⇐= (

∑
α pα;α); pβ ≤ pβ ,

which holds because pα;α; pβ ≤ pβ for every atom α. The R-ancestors of the
atom β for the regular set R(eβ), where

eβ = β+ + β+; (
∑
α pα;α+)∗; pβ ;β+.

We have already shown in KAR that epβ ≡ pβ , and therefore eβ ≡ β+β; pβ ;β ≡
β + β ≡ β. The only ancestor of dup is dup, so we put edup = dup. Let E be
the associated equations, and suppose that GR⊥(e1) = GR⊥(e2). It follows that
KAE ` e1 ≡ e2, and therefore NetKAT ` e1 ≡ e2.

One more application

We consider the case of KAT with extra equations of the form p; b ≡ b; p, where
b is a test and p is an atomic action. We claim that the equation p; b ≡ b; p is
equivalent to the conjunction of the following equations:

β; p; γ ≡ 0 (for β ≤ b, and γ ≤ ¬b)
γ; p;β ≡ 0 (for γ ≤ ¬b, and β ≤ b)

For one direction of the claim, we observe that:

p; b ≡
∑
γ∈At, β≤b γ; p;β ≡

(∑
γ≤b, β≤b γ; p;β

)
+
∑
γ≤¬b, β≤b γ; p;β ≡

∑
γ,β≤b γ; p;β

b; p ≡
∑
β≤b, γ∈At β; p; γ ≡

(∑
β≤b, γ≤b β; p; γ

)
+
∑
β≤b, γ≤¬b β; p; γ ≡

∑
β,γ≤b β; p; γ

29

It follows that p; b ≡ b; p. For the other direction of the claim, we have:

for β ≤ b and γ ≤ ¬b : β; p; γ ≤ b; p; γ ≡ p; b; γ ≡ 0 =⇒ β; p; γ ≡ 0

for γ ≤ ¬b and β ≤ b : γ; p;β ≤ γ; p; b ≡ γ; b; p ≡ 0 =⇒ γ; p;β ≡ 0

So, w.l.o.g. we can consider equations of the form β; p; γ ≡ 0, for atoms β, γ and
atomic action p. This is exactly like the case of Hoare hypotheses, and so we
obtain a completeness theorem.

30

