
Transducers with origin information

Miko laj Bojańczyk

August 24, 2018

Abstract

Call a string-to-string transducer regular if it can be realised by one
of the following equivalent models: mso transductions, two-way deter-
ministic automata with output, and streaming transducers with registers.
This paper proposes to treat origin information as part of the semantics
of a regular string-to-string transducer. With such semantics, the model
admits a machine-independent characterisation, Angluin-style learning in
polynomial time, as well as effective characterisations of natural subclasses
such as one-way transducers or first-order definable transducers.

This paper is about string-to-string transducers which, in one of several
equivalent definitions, can be described by deterministic two-way automata with
output [AU70]. As shown in [EH01], this model is equivalent to mso definable
string transducers. Another equivalent model, used in [AC10], is a deterministic
one-way automaton with registers that store parts of the output1. Examples of
such transducers include: duplication w 7→ ww; reversing w 7→ wR; a function
w 7→ wwR which maps an input to a palindrome whose first half is w; and
a function which duplicates inputs of even length and reverses inputs of odd
length. As witnessed by the multiple equivalent definitions, this class of string-
to-string transducers is robust, and therefore, following [AC10], we call it the
class of regular (string-to-string) transducers. Regular transducers have good
closure properties. For instance, if f and g are regular, then the composition
w 7→ f(g(w)) is also regular, which is straightforward if the mso definition is
used, but nontrivial if the two-way automata definition is used [CJ77]. Also the
concatenation w 7→ f(w) · g(w) is regular, which is aparent in any of the three
definitions. Equivalence is of regular transducers is decidable, as was shown
in [Gur82] using the two-way automata definition.

Origins. The motivation of this paper is the simple observation that the mod-
els discussed above, namely determinsitic two-way automata with output, mso
definable string transducers, and automata with registers, provide more than
just a function from strings to strings. In each case, one can also reconstruct

1Registers are similar to attributes in attribute grammars. The equivalence of mso definable
transductions with a form of attribute grammars, in the tree-to-tree case, was shown in [BE00].
In the special case of string-to-string transductions, the attribute grammars from [BE00]
correspond to left-to-right deterministic automata with registers and regular lookahead.

1

ar
X

iv
:1

30
9.

61
24

v1
 [

cs
.F

L
]

 2
4

Se
p

20
13

origin information, which says how positions of the output string originate from
positions in the input string. How do we reconstruct the origin of a position x in
an output string? In the case of a deterministic two-way automaton, this is the
position of the head when x was output. In the case of an mso definable trans-
ducer, this is the position in which x is interpreted. In the case of an automaton
with registers, this is the position in the input when the letter x was first loaded
into a register. In other colours, for a transducer we can consider two semantics:
the standard semantics, where the output is a string, and the origin semantics,
where the output is a string with origin information. The second semantics is
finer in the sense that some transducers might be equivalent under the standard
semantics, but not under the origin semantics.

Tracking origin information for transducers has been studied before, for in-
stance in the programming language community. Various tools for program-
ming languages, such as evaluators, type checkers or translators, can be seen
as tree-to-tree transducers, which transform syntax trees. The paper [vDKT93]
provides a precise definition of origin information, and shows how it can be
used visualize program execution, construct debuggers, and provide positional
information in error reports. This idea is further developped in [DKT96], which
in particular shows some results about origin information for macro tree trans-
ducers, a powerful model that generalises the transducers considered in this
paper. Origin information has also been used as a technical tool in the study of
tree-to-tree transducers. Examples include [EM03], where origin information is
used to characterise those macro tree transducers which are mso definable, and
[LMN10], where origin information is used to get a Myhill-Nerode characterisa-
tion of deterministic top-down tree transducers.

Origin semantics. To illustrate the difference between the two semantics
(standard and origin) of a string-to-string transducer, consider a transducer
which is the identity on the string ab, and which maps other strings to the
empty string. If we care about origins, then this description is incomplete. It
could be that the first letter of the ouptut originates from the first letter of
the input, and the second letter of the output corresponds to the second letter
of the input (as realised by a two-way automaton, which first does a pass to
determine if the input is ab, and then does a second pass which copies the
input). It could also be that the whole output originates from the first letter
in the input (as realised by a two-way automaton, which first does a pass to
determine if the input is ab, and then returns to the first position where it
outputs ab). Altogether, the same standard semantics can be described by four
different origin semantics shown below.

a b

a b

a b

a b

a b

a b

a b

a boutput

input

Another example is the identity function on strings over a one letter alphabet
{a}, which can be realised infinitely many different ways once origins are taken

2

into account. One example is an automaton that outputs an in input positions
divisible by n, and then outputs the remainder under division by n in the last
input position.

This paper is a study of the more refined semantics. Almost any “natural”
construction for transducers will respect origin information. For instance, the
translation from [EH01] which converts an mso interpretation into a determin-
istic two-way automaton remains correct when the origin information is taken
into account. The same holds for the other translations between the three mod-
els. In other colours, one can also talk about regular string-to-string transducers
with origin information. Various closure properties, such as composition and
concatenation, are retained when origins are taken into accout. Some results
become easier to prove, e.g. equivalence of string-to-string transductions.

A machine independent characterisation. The main contribution of this
paper is a machine independent characterisation of regular transductions with
origin information, which is given in Theorem 2.1. The characterisation is sim-
ilar to the Myhill-Nerode theorem, which says that a language L is regular if
and only if it has finitely many left derivatives of the form

w−1L
def
= {v : wv ∈ L}.

Furthermore, from the Myhill-Nerode theorem for regular languages one obtains
a canonical device, which is the minimal deterministic automaton (a minimal
right-to-left automaton is obtained if right derivatives are used, and a minimal
monoid is obtained if two-sided derivatives are used). The situation is similar
for transducers with origin information. We define a notion of left and right
derivatives for a transducer with origin information, and show that a transducer
is regular if and only if it has finitely many left and right derivatives (finitely
many left derivatives is not enough, same for right derivatives). The proof of the
theorem yields a canonical device, which is obtained from the function itself and
not its representation as a two-way automaton, mso transduction, or machine
with registers. One use for the canonical device is testing equivalence: two
devices are equivalent if and only if they yield the same canonical machine.

Another use of the canonical device is that it is easy to see when the under-
lying function actually belongs to a restricted class, e.g. if it can be defined by
a deterministic one-way automaton with output (see Theorem 4.2), or by func-
tional nondeterministic one-way automaton with output (see Theorem 4.1). A
more advanced application is given in Theorem 5.1, which characterises the
firsto-order fragment of mso definable transducers with origin information.

Learning. One of the advantages of origin information is that it allows trans-
ducers to be learned, using an Angluin style algorithm. We show that a trans-
ducer with origin information can be learned with a number of queries that is
polynomial in the size of the canonical device. The queries are of two types:
the learner can ask for the value of the transducer on some input string; or
the learner can propose a transducer with origin information, and in case this

3

is not the correct one, then get a counterexample string where the proposed
transducer produces a wrong output.

In the algorithm, the learner uses the origin information. However, it seems
that the learner’s advantage from the origin information does not come at any
signficant cost to the teacher. Suppose that we want to learn a transducer inside
a text editor, e.g. the user wants to teach the text editor that she is thinking
of the transducer which replaces every = by :=. If a user is trying to show
an example of this transducer on some input, then she will probably place the
cursor on occurrences of = in the input, delete them, and retype :=, thus giving
origin information to the algorithm. A user who backspaces the whole input and
retypes a new version will possibly be thinking of some different transformation.
It would be wasteful to throw away this additional information supplied by the
user.

Thank you. I would like to thank Sebastian Maneth for his valuable feed-
back; Anca Muscholl, Szymon Toruńczyk and Igor Walukiewicz for discussions
about the model; and Rajeev Alur for asking the question about a machine-
independent characterisation of transducers.

1 Regular string to string transducers

A string-to-string transducer is any function from strings over some fixed input
alphabet to strings over some fixed output alphabet. A string-to-string trans-
ducer with origin information is defined the same way, but for every input string
w it provides not only an output string f(w), but also origin information, which
is a function from positions in f(w) to positions in w. In this section we recall
the definition of regular string-to-string transducers, and define the notion of
regular string-to-string transducers with origin information. Since we only con-
sider string-to-string transducers in this paper, we simply say transducer from
now on.

Streaming transducer. An streaming transducer is defined as follows. It
has finite input and output alphabets. There is a finite set of control states with
a distinguished initial state, and a finite set of registers, with a distinguished
output register. The transition function inputs a control state and an input
letter, and outputs a new control state and a register update, which is a sequence
of register operations of two possible types:

• replace the contents of register r with rs, and erase register s;

• replace the contents of register r with output letter b.

Finally, there is an end of input function, which maps each state to a sequence
of register operations of the first type2.

2The end of input function is prohibited to produce new output letters so that the origin
information can be assigned. Alternatively, one could assume that the positions produced by
the end of input function have a special origin, “created out of nothing”.

4

When given an input string, the transducer works as follows. It begins in
the initial state with all registers containing the empty string. Then it processes
each input letter from left to right, updating the control state and the registers
according to the transition function. Once the whole input has been processed,
the end of input function is applied to the last state, yielding another sequence
of register operations, and finally the value of the transducer is extracted from
the output register. For the origin semantics, the origin of an output letter is the
input letter over which that output letter was first created, using an operation
of the second type.

Observe that the register operations do not allow copying registers, this is
an important restriction which guarantees, among other things, that the size of
the input is linear in the size of the output.

Example 1. By composing the atomic register operations and using additional
registers, we can recover additional register operations such as “add letter b to
the end of register r”, “add letter b to the beginning of register r”, “move register
r to register s, leaving r empty”. In the examples, we will use the additional
operations.

Consider the function w 7→ wwR, where wR is the reverse of w. The trans-
ducer has no control (i.e. one control state) and two registers, which are used to
store w, wR. When it reads an input letter a, the transducer adds a as to the
end of the register storing w and adds a to the beginning of the register storing
wR. The end of input update concatenates both registers, and puts the result
in the first register, which is the output register.

A transducer for the duplication function is obtained in a similar way. Ob-
serve that since the register operations do not allow copying, it is still necessary
to have two registers, both storing w. �

Deterministic two-way automaton with output. A deterministic two-
way automaton with output is like a deterministic two-way finite automaton,
except that every transition is additionally labelled by a string (possibly empty)
over the output alphabet. The output of the automaton is the concatenation
of the strings labelling the transitions in the run, in the order that they were
executed. The origin of an output letter is the input letter in the source of
the transition that output it. Therefore, we require that every output letter
is produced for transitions that have their source in input letters, and not the
markers ` and a that guard the input from both sides.

One can consider a nondeterministic version, i.e. a nondeterministic two-way
automaton with output. To make the output a function of the input, we require
the nondeterministic automaton to have a unique run over every input. This
relaxation does not add to the expressive power, as long as two-way automata
are considered. On the other hand, if we consider nondeterministic one-way
automata with output, then the model looses expressive power, and will be
studied in Theorem 4.1.

5

MSO transduction. A string over an alphabet A can be treated as a rela-
tional structure, whose universe is the positions of the string, and which has a
binary position order predicate x < y and label predicates a(x) for the letters of
the alphabet. By evaluating formulas on such a structure, one can use formulas
to define a string language. As shown by independently by Büchi, Trakhtenbrot
and Elgot, regular languages are exactly those definable in mso.

To transform strings into strings, we can use mso interpretations. An mso
interpretation is a function from structures over some fixed input vocabulary
to structures over some fixed output vocabulary, which is specified by a system
of mso formulas, as follows. There is a universe formula with one free variable
over the input vocabulary, which selects the elements of the universe of the input
structure that will appear in the universe of the output structure. Furthermore,
for every predicate of the output vocabulary there is a formula over the input
vocabulary of the same arity, which says how the predicates are defined in the
output structure.

Another function from structures to structures is called k-copying ; which
maps a structure to k disjoint copies of itself, together with unary predicates
1(x), . . . , k(x) which identify which copy an element comes from. A copying mso
transduction consists of first a copying function, followed by an mso interpreta-
tion.

Using the encoding of strings as relational structures, copying mso transduc-
tions can be used to map strings to strings. Such a string to string transducer
is called mso definable. The origin information in such a transducer is defined
in the natural way.

Equivalence of the models. Deterministic two-way automata with out-
put are shown to defined the same transducers as copying mso transductions
in [EH01]. The same proof works if the semantics with origin information are
used. The streaming transducers are shown to be equivalent to the previous
two models in [AC10]; the same proof also works with the origin semantics. A
transducer with origin is called regular if it can be defined by any one of the
three models mentioned above.

2 A machine independent characterisation

In this section we present a Myhill-Nerode style characterisation of regular trans-
ducers with origin information. Suppose that f is a regular transducer with ori-
gin information, and u, v, w are input strings. Some part of the output f(uvw)
is a transformed version of the middle part of the input v. Because of regularity,
the way that v is transformed will depend only on some regular properties of
the left and right parts of the input u and w. In particular, there should be
finitely many types of the left and right parts, as far as the transformation on
the middle part is concerned. To see the way the middle part is transformed in
the output, without looking at the artefacts of the left and right parts, we use

6

the notation f(u|v|w), which represents the output f(uvw), with the parts orig-
inating from the left part u and the right part w abstracted away. For instance,
if f is the duplicating function, then

f(ab|cd|e) = left
cd

middle right left
cd

middle right. (1)

This notion is defined in more detail below.

2.1 Derivatives

Factored outputs. Let X be a set of source identifiers, which are supposed
to correspond to the parts in a factorsiation of the input, e.g. the source iden-
tifiers can be “left” and “right” when the input is divided into a left and right
factor. An X-factored output is defined to be a sequence of pairs of the form
(element from X, string over the output alphabet). The second coordinate may
be undefined. Each pair is called a block, the first coordinate of a block is called
its source identifier, and the second coordinate is called its output assignment.
We write a factored output by putting the source identifiers in a lower row,
and the values of the output assignment in an upper row. For instance, in
the equation (1), the right side is an X-factored output, with X being the set
{left,middle, right}.

Suppose that w is an input, σ is a colouring of the positions in the input
string, and f is a transducer with origin information. Factorise the output f(w)
so that consecutive blocks of letters with the same colour of their source are put
in the same factor; and label each such block by the colour of their source. This
results in a factored output, which we denote by f(w)/σ. Define

f(u|v|w)
def
= f(uvw)/σ

where σ maps positions from u, v, w to “left”, “middle” and “right”, respectively.
Define f(v|w) in the similar way, only without “middle”, which means that
f(v|w) = f(v|ε|w). For example, if f is the duplicating function w 7→ ww, then

f(abc|d) =
abc
left

d
right

abc
left

d
right

If we underline some of the strings, then we make the output assignment unde-
fined for the blocks coming from the underlined strings, e.g.

f(abc|d) =
abc
left right

abc
left right.

Example 2. Suppose that f is the function w 7→ ww. Then

f(a|b|c) =
a

left
b

middle
c

right
a

left
b

middle
c

right

f(a|b|c) = left
b

middle right left
b

middle right

f(a||bc) =
a

left right
a

left right

7

�

Derivative. A two-sided derivative of a function f is any function of the form

fu w
def
= v 7→ f(u|v|w).

Left derivatives and right derivatives are functions of the, respective, forms

fv
def
= w 7→ f(v|w)

f w
def
= v 7→ f(v|w).

Example 3. Let f be the function w 7→ wRw. Then

fu w(v) = right
vR

middle left
v

middle right

for every nonempty strings u or w. When the string u is empty, then the left
block disappears, likewise when w is empty then the right blocks disappear. In
particular, this function has four possible values for the two-sided derivative.
There are two possible values for the left derivative fu , namely the functions

v 7→
vRv
right v 7→

vR

right left
v

right.

The first function behaves like the orginal function, although they are technically
distinct. �

Example 4. Let f be the function which is the identity on strings of even
length, and which erases strings of odd length. This function has three possible
left derivatives fv , depending on whether v is empty, nonempty and even legnth,
or odd length. In the last case, the derivative is

w 7→

{
left

w
right if w has odd length

ε otherwise
.

�

Example 5. Consider an input alphabet {a, b} and the function f defined by

f(anbw) = wn f(an) = ε.

This function has infinitely many left derivatives. For instance, fanb is

v 7→
vn

right.

�

8

Example 6. Here is a function with finitely many right derivatives, but in-
finitely many left derivatives. Consider first the function which scans its input
from left to right, and outputs only those letters whose position is a prime
number

f(a1 · · · an) = w1 · · ·wn where wi =

{
ai if i is a prime number

ε otherwise.

This particular function has infinitely many right derivatives, since

f w(v) =


f(v)

left right if there is a prime number in {|v|+ 1, . . . , |vw|}
f(v)

left otherwise.

However finitely many right derivatives can be obtained by making the last
position to be output unconditionally, i.e. in the transducer

g(a1 · · · an) = f(a1 · · · an−1)an.

In this case, g has only two right derivatives, namely

v 7→
g(v)

left v 7→
f(v)

left right.

The function has infinitely many left derivatives gv because the criterion “i is
a prime number” needs to be replaced by “i+ |v| is a prime number”. �

The characterisation. A function from strings to a finite set is called a
regular colouring if every preimage f−1(x) is a regular language. A function
from tuples of strings to a finite set is called a regular colouring if it factors
through a function

(w1, . . . , wn) 7→ (f1(w1), . . . , fn(wn))

for some regular colourings f1, . . . , fn of individual strings. In an equivalent
definition, all the colourings fi could be required to be the same. In yet another
definition, for every x in the image, the set

{w1#w2# · · ·#wn : f(w1, . . . , wn) = x}

is a regular language of strings, assuming # is a symbol not in the input alpha-
bet.

In the following theorem, a string-to-string function with origin information
is any function which maps a string (over a fixed input alphabet) to another
string (over a fixed ouptut alphabet), together with origin information. The
theorem characterises those functions which happen to be regular transducers,
e.g. can be implemented by an mso transduction.

9

Theorem 2.1 (Machine indpendent characterisation) For a string-to-string
function with origin information, the following conditions are equivalent

1. f is regular transducer with origin information;

2. f has finitely many left derivatives and right derivatives;

3. for every a in the input alphabet, the following is a regular colouring

(v, w) 7→ f(v|a|w).

The function in the third item of the theorem is called the characteristic func-
tion of the transducer. As we will see in the proof of the theorem, a transducer
with origin information can be uniquely reconstructed based on its characteristic
function. Therefore, instead of studying transducers, we can study their char-
acteristic functions. This is the case in the learning algorithm from Section 3,
and the studies of subclasses of transducers in Sections 4 and 5.

As shown in Example 6, it is not enough to require finitely many derivatives
of one kind, say right derivatives, since a function might have finitely many
derivatives of one kind, but infinitely many derivatives of the other kind3.

Implication from 1 to 2. To show that there are finitely many derivatives
in a regular transducer, suppose that f is a function that is recognised by a two-
way deterministic automaton with output. When the head of this automaton
enters a suffix of the input from the left in some state, then several things can
happen: it might not return from that suffix, or it might return from that suffix
in some other state. In either case, whether it returns or not, the automaton
can output an empty or nonempty string. Define the suffix type of a string to
be the partial function

Q→ (Q ∪ {noreturn})× {empty, nonempty},

which says what happens for each state q. It is not difficult to see that f(x|y)
depends only on the right type of x. Since there are finitely many suffix types,
there are also finitely many right derivatives. For the left derivatives, a similar
argument works, only with a type that also describes the first time that a prefix
is exited by the head.

Implication from 2 to 3.

Lemma 2.2 Let w1, . . . , wn and w, v be input strings. Then

fw = fv implies f(w|w1| · · · |wn) = f(v|w1| · · · |wn)

3 It does follow from the theorem that a function with finitely many left and right deriva-
tives has finitely many two-sided derivatives. This is because every regular string-to-string
function has finitely many two-sided derivatives.

10

Proof
By using the origin information, the value

f(w|w1| · · · |wn)

can be obtained from the value

f(w|w1 · · ·wn)
def
= fw (w1 · · ·wn).

�

Lemma 2.3 The functions w 7→ fw and w 7→ f v are regular colourings.

Proof
The domains of the two functions are finite by the assumption 2, which says
that there are finitely many left and right derivatives. By symmetry, we only
study the left derivatives fw . By Lemma 2.2, it follows that

fw = fv implies f(w|a|u) = f(v|a|u)

hods for every input letter a and every input string u. Since f(w|a|u) uniquely
determines f(wa|u), it follows that

fw = fv implies fwa = fwa

holds for every input letter a. This means that the set of left derivatives can be
equipped with a transition function as in a deterministic left-to-right automaton,
so that after reading a string w from the state fε , the automaton ends up in
state fw . �

Thanks to Lemma 2.2 and its symmetric version for right derivatives,

(v, w) 7→ f(v|a|w)

factors through the function

(v, w) 7→ (fv , f w),

meaning that equal results for the second function imply equal results for the
first function. The second function is a regular colouring by Lemma 2.3. A func-
tion which factors through a regular colouring must itself be a regular colouring,
which finishes the proof of item 3 in Theorem 2.1.

Implication from 3 to 1. In the proof, we use a two-way model called a
lookaround transducer, which is defined as follows. The control is given by two
deterministic automata: a past automaton, which is left-to-right deterministic,
and a future automaton, which is right-to-left deterministic. There is a set of
registers, with a designated output register. The registers are updated by a
register update function, which inputs a state of the past automaton, an input

11

letter, and a state of the future automaton, and outputs a sequence of register
operations.

The output of the transducer on a string over the input alphabet is defined
as follows. Define the type of a position i in the input string to be: the state
of the past automaton after doing a left-to-right pass over the prefix that ends
just before position i; the label of position i; the state of the future automaton
after doing a right-to-left pass over the suffix that begins just after position
i. To each type, the register update function assigns a register update. The
automaton begins with all register empty, and then it executes the register
updates corresponding to the types of all positions in the string, read from
left to right. After all of these register updates are executed, the value of the
function is found in the output register.

Lookaround transducers define exactly the regular transducers, also under
the origin semantics.

To prove item 1 in Theorem 2.1, we construct a lookaround transducer based
on the assumption that the chara. We begin by describing the registers. The
transducer has a register for every left block in every partial output f(x|y). A
partial output f(v|w) can be interpreted as a register valuation, which is defined
on the left blocks of f(v|w) and undefined on all other registers. The transducer
is designed to satisfy the following invariant: when it has finished processing a
prefix v of an input vw, then its register valuation is f(v|w).

It remains to define the past and future automata, as well as the register
update function. Our assumption, namely item 3, says that for every letter a
in the input alpahbet, the function

(v, w) 7→ f(v|a|w)

is a regular colouring. This means that there is a left-to-right deterministic
automaton, which we can choose to be the past automaton, and a right-to-left
deterministic automaton, which we can choose to be the future automaton, such
that f(v|a|w) depends only on the state of the past automaton after reading v,
the input letter a, and the state of the future automaton after reading w from
right-to-left. The following lemma shows that the register udpate function can
be defined to satisfy the invariant.

Lemma 2.4 Based on f(v|a|w), one can construct a sequence of register op-
erations which transforms the register valuation corresponding to f(v|aw) into
the register valuation corresponding to f(va|w)

Proof
For every left block b in f(va|w) there is a corresponding sequence b′ of left
and middle blocks in f(v|a|w). The register update required by the lemma is
defined according to this sequence: for every left block b in f(va|w), its value is
defined to be the concatenation, according to the sequence b′, of the values of
the left and middle blocks in f(v|aw) and f(v|a|w), respectively. �

This finishes the proof of Theorem 2.1.

12

3 Learning

This section shows that transducers with origin information can be learned. We
first recall the Angluin algorithm for regular languages, which will be used as a
black box in our learning algorithm for learning transducers. The setup for the
Angluin algorithm is as follows. A teacher knows a regular language. A learner
wants to learn this language, by asking two kinds of queries. In a membership
query, the learner gives a string and the teacher responds whether this string is
in the language. In an equivalence query, the learner proposes candidate for the
teacher’s language, and the teacher either says that this candidate is correct, in
which case the interaction is over, or returns a counterexample, which is a string
in the symmetric difference between the candidate and teacher’s languages.

Angluin proposed an algorithm [Ang87], in which the learner learns the
language by asking a number of queries which is polynomial in the minimal
automaton for the teacher’s language, and the size of the counterexamples given
during the interaction. In this section, we propose a variant of this algorithm,
but for learning transducers with origin information. In the case of transducers,
the membership query becomes a value query, where the learner gives a string
and the teacher responds with the value of the transducer on that string. In the
equivalence query, the counterexample becomes a string where the transducer
proposed by the learner gives a different value than the transducer of the teacher.
Both in the value query and in the counterexample, the teacher also provides
the origin information.

Theorem 3.1 A regular string-to-string transducer with origin information can
be learned using value and equivalence queries in polynomial time (both num-
ber of queries and computation time) in terms of the number of left and right
derivatives, and the size of the counterexamples given by the teacher.

Proof
By Theorem 2.1, learning a transducer with origin information f is the same as
learning the characteristic function

(v, w) 7→ f(v|a|w).

We show that the characteristic function can be encoded as a regular language,
and then the Angluin algorithm can be invoked as a black box to learn it. A
value of the characteristic function can be seen as a string over the output
alphabet, plus two additional letters left and right for indicating left and right
blocks. Therefore, the characteristic function can be interpreted as a string
language

Lf
def
= {v#a#wR#f(v|a|w)},

where the strings before the first and second # are over the input alphabet,
and the string after the second # is over the output alphabet extended by
the letters for left and right blocks. It is not difficult to see that the minimal

13

deterministic automaton of the language Lf is polynomial in the parameters
from the statement of the lemma. The reason why the string w is reversed is
that the automaton for the right derivatives reads its input from right to left.

Therfore, we can apply the Angluin algorithm to learn the language Lf . The
only technical issue is that the queries for learning Lf need to be translated into
the queries for learning f . A membership query

u
?
∈ Lf

corresponds to a value query for the transducer f , as follows. If the string w
does not have the right format – exactly three apperances of #, with exactly
one letter between the second and third appearance – then the learner can im-
mediately answer “no” without bothering the teacher. Otherwise, the learner
extracts the (v, a, w) stored in u, and asks for the value of f(vaw). Using the
origin information, learner computes the value f(v|a|w), and can thus deter-
mine if u belongs to Lf . The correspondence between equivalence queries and
counterexamples is done in a similar fashion. �

4 Order-preserving transducers

In this section, we present two characterisations of sublcasses of transducers.
For the standard semantics without origins, [FGRS13] shows how to decide
if a deterministic two-way transducer is equivalent to a nondeterministic one-
way transducer, while [WK94] shows how to decide (in polynomial time) if a
nondeterministic one-way transducer is equivalent to a deterministic one-way
transducer. This sections shows analogous results for the origin semantics. Un-
like [FGRS13, WK94], the characterisations for the origin semantics are self-
evident, which shows how origin information makes some technical problems go
away. A more difficult characterisation, about first-order definable transducers,
is presented in the next section.

Theorem 4.1 For a regular string-to-string transducer with origin information
f , the following conditions are equivalent.

1. for every input string w, the origin mapping from positions in the output
f(w) to the input w is order-preserving.

2. f(v|w) belongs to (ε+ left)(ε+ right) for every input strings v, w.

3. f is recognised by a streaming transducer with lookahead which has only
one register, and which only appends output letters to that register.

4. f is recognised by a nondeterministic one-way automtaton with output,
which has exactly one run over every input string.

14

Proof
The implication from item 1 to item 2 follows straight from the definition. For
the implication from item 2 to 3, we observe that if condition 1 is satisfied,
then the transducer constructed in the proof of Theorem 2.1 will only have
one register, and it will only append letters to that register during the run.
For the implication from item 3 to item 4, we observe that a nondeterministic
one-way automaton with output can guess, for each position of the input, what
the lookahead will say. Since the lookahead is computed by a deterministic
right-to-left automaton, this leads to a unique run on every input string. The
implication from item 4 to item 1 also follows straight from the definition. �

Observe that the condition in item 2 can be effectively decided, even in
polynomial time, when the characteristic function of the transducer is known.

We can further restrict the model by requiring that the transducer in item 3
does not use any lookahead, or equivalently, by requiring that the automaton in
item 4 be deterministic. This restricted model is characterised in the following
theorem.

Theorem 4.2 Let f be a regular transducer which satisfies any of the equiva-
lent conditions in Theorem 4.1. Then f is defined by a one-way deterministic
automaton with output if and only if every input strings u, v, w satisfy

f(u|v) = f(u|w)

Proof
The left-to-right implication is immediate. For the right-to-left implication, we
observe that the assumption implies that

f(u|a|v)

does not depend on v, but only on fu and the letter a. Furthermore, since f
satisfies the assumptions from Theorem 4.1, the above value is of the form

left
x

right,

where x is a possibly empty string over the output alphabet, and the block left

is possibly missing. After reading input u, the automaton stores in its control
state the derivative fu . When it reads a letter a, it updates its control state,
and outputs the string w, which depends only on the control state and input
letter a. �

5 First-order definable transducers

A regular string-to-string transducer with origin information is called first-order
definable if it can be defined by an mso transduction which does not use set quan-
tification, but only the first-order quantifiers. In this section, we characterise
the first-order definable transducers by a variant of aperiodicity.

15

A language is called first-order definable if there is a sentence of first-order
logic that is true in strings from the language and false for other strings. This
lifts, in the natural way, to a notion of a first-order definable regular coloring.

Theorem 5.1 The following conditions are equivalent for a regular string-to-
string transducer f with origin information.

1. it is definable by a first-order string-to-string transduction.

2. the colorings w 7→ fw and w 7→ f w are first-order definable.

3. for every letters a, b, the following is a first-order definable coloring

(u, v, w) 7→ f(u|a|v|b|w)

Before proving the theorem, we observe that condition in item 2 is effective. Us-
ing a straightforward extension of the the Schutzenberger-McNaughton-Papert
theorem, one can effectively decide if a regular coloring is first-order definable.
By applying the decision procedure to the functions w 7→ fw and w 7→ f w, we
can decide if a regular transducer is first-order definable.

Without origin information, a variant of first-order definable transducers was
considered in [MSTV06], namely the transducers which are first-order definable
in the sense of Theorem 5.1 and simultaneously order preserving in the sense
of Theorem 4.1. For instance, the doubling transduction w 7→ ww is first-order
definable in the sense of Theorem 5.1, but not in the sense of [MSTV06], because
it is not order preserving. By testing for both condition 2 from Theorem 5.1 and
condition 2 of Theorem 4.1, we get an effective characterisation of the transduc-
ers from [MSTV06], however this characterisation uses origin information

Implication from 1 to 2. By symmetry, it suffices to show that w 7→ fw is
first-order definable. Since there are finitely many possible values of fw , there
is a finite set of test strings such that fw is uniquely determined by its values
on the test strings. It is therefore sufficient to show that for every test string,
one can compute in first-order logic, given w, the value of fw on the test string.
This is done in the following lemma.

Lemma 5.2 If f is first-order definable, then for every string v the function
w 7→ f(w|v) is first-order definable.

Proof
Define the colored version of an alphabet to be two disjoint copies: one called
the black version, and one called the red version. Define f ′ to be a transducer
which inputs a string over the colored version of the input alphabet, and works
the same way as f , except that it outputs strings over the colored version of
the output alphabet, and the color of an output letter is inherited from the
corresponding input letter. Consider a function which inputs a string w over
the original input alphabet, and outputs a black version of w, followed by a
red version of v. We denote this function by w 7→ wv. It is not difficult to see

16

that both functions described above are first-order definable transducers, and
since these are closed under composition, it follows that w 7→ f ′(wv) is first-
order definable. For every possible value x of f(w|v), one can write a first-order
formula ϕx such that

f(w|v) = x iff f ′(wv) |= ϕx for every w.

The property on the right side of the equivalence can be checked by a first-order
formula working on w. �

Implication from 3 to 1. For the moment, we skip the implication from 2
to 3, which is the most difficult4. We begin by showing that the characteristic
function of the transducer is first-order definable.

Lemma 5.3 For evey letter a, the following function is first-order definable

(v, w) 7→ f(v|a|w).

Proof
The for every letter b of the input alphabet, function

(v, w′) 7→ f(v|a|w′b)

must be first-order definable since it factors through the function

(v, w′) 7→ f(v|a|w′|b|ε),

which is first-order definable. It follows that, as long as we know that w ends
with b, then we can use first-order logic to obtain f(v|a|w). If w is nonempty,
then it has finitely many possiblities for the last letter, and therefore, we can
use first-order logic to obtainw f(v|a|w) as long as we know that w is nonempty.
The same argument works when v is nonempty. The remaining case is when
both v and w are empty, which can be detected in first-order logic. �

We are now ready to define the first-order transduction. Define the contri-
bution of a position in an input to be the subsequence (a string) of the output
which originates from that position. The contribution depends only on f(v|a|w),
where v is the part of the input before the position, a is the label of the position,
and w is the part of w after the position.

Let N be the maximal length of a contribution, ranging over all finitely
many choices of f(v|a|w). The first-order interpretation defining f will copy
each position of the input at most N times.

Given an input a1 · · · an, the fist-order interpretation works as follows.

4The implication from 1 to 3 can be proved in the same way as in Lemma 5.2. Therefore
the theorem with only items 1 and 3 would be easier to prove. Such a weaker theorem would
still give an effective characterisation of first-order definable transduction.

17

• The universe formula. For i ∈ {1, . . . , N}, the i-th copy of a position
x in the input string belongs to the universe of the output string if and
only if i is at most the length of the contribution of the x-th letter in the
input string. For fixed i, this can be determined by a first-order formula
with a free variable x, thanks to Lemma 5.3.

• The label formulas. The label formulas are defined in the same way as
the domain formula, only using the label of the i-th contribution.

• The order formula. For every i, j ∈ {1, . . . , N}, we need a first-order
formula with two free variables x and y which says if, in the output, the i-
th letter in the contribution of position x comes before the j-th letter in the
contribution of position y. Assuming that x is before y, this information
is entirely determined by partial output

f(a1 · · · ax−1|ax|ax+1 · · · ay−1|ay|ay+1 · · · an),

which can be obtained using first-order logic thanks to the assumption.
The case when x comes after y is symmetric, and in the special case when
x = y the formula simply returns the value of i ≤ j.

Implication from 2 to 3. We say that a regular coloring g of n-tuples is
aperiodic on coordinate i if for every strings

w1, w2, . . . , wi−1, x, y, z, wi+1, . . . , wn,

the following function is ultimately constant

i 7→ g(w1, . . . , wi−1, xy
iz, wi+1, . . . , wn).

A straightforward consequence of the Schützenberger-McNaughton-Papert the-
orem is that a regular colouring is first-order definable if and only if it is aperi-
odic on every coordinate. Therefore, item 3 will follow once we show that the
function

(u, v, w) 7→ (u|a|v|b|w)

is aperiodic on every coordinate. We begin with the first coordinate. Let then
u1, u2, u3, v, w be strings. We need to show that the function

i 7→ f(u1u
i
2u3|a|v|b|w)

is ultimately constant. For fixed a, v, b, w, the function above factors through

i 7→ fu1ui
2u3

,

which must be ultimately constant by the assumption in item 3, and therefore
it must also be ultimately constant. A symmetric argument shows that the
function from the statement of the lemma is aperiodic on the third coordinate.

18

We are left with the second coordinate. Let then u, v1, v2, v3, w be strings. We
need to show that the function

i 7→ f(u|a|v1vi2v3|b|w) (2)

is ultimately constant.

Lemma 5.4 Suppose that

f(uv|w) = f(u|w) = f(u|vw)

Then the function

i 7→ f(u|vi|w)

is ultimately constant.

Before proving the lemma, we show how it completes the proof of the im-
plication from item 2 to item 3 in Theorem 5.1, and therefore also completes
the proof of the theorem itself. Our goal is to show that the function (2) is
ultimately constant. We will show that for sufficiently large j, the function

i 7→ f(u|a|v1vj2|vi2|v
j
2v3|b|w) (3)

is ultimately constant. This will imply that the function

i 7→ f(u|a|v1vi+2j
2 v3|b|w)

is ultimately constant, and therefore also (2) is ultimately constant. We claim
that the function (3) factors through the following functions

i 7→ f(u|a|v1vj2|v
i+j
2 v3bw) (4)

i 7→ f(uav1v
j
2|vi2|v

j
2v3bw) (5)

i 7→ f(uav1v
j+i
2 |vj2v3|b|w). (6)

Indeed, the value of (3) is obtained from (5) by replacing the left part with the
first three parts in (4), and replacing the right part with the last three parts
in (6). The function (4) factors through

i 7→ f vi+j
2 v3bw

and is therefore ultimately constant by the assumption that w 7→ f w is aperi-
odic. For the same reason, the function (6) is ultimately constant. We are only
left with showing that (5) is ultimately constant. If j is large enough, then by
aperiodicity of w 7→ fw , we see that

fuav1vj2
= fuav1vj+1

2
and f vj2v3bw

= f vj+1
2 v3bw

19

which implies that the assumptions of Lemma 5.4 for

u = uav1v
j
2 v = v2 w = vj2v3bw.

The conclusion of the lemma shows that (5) is ultimately constant.
Proof (of Lemma 5.4)
Consider the partial output f(u|w), which consists of left and right blocks in
alternation. This output can be viewed as a graph (which consists of a single
directed path), call it G0, which is illustrated in the following picture.

The vertices (black dots in the picture) in the left column correspond to left
blocks, the vertices in the right column correspond to right blocks. There is a
directed edge from a block to the following block; the edges in the picture are
implicitly directed so that the path goes from top to bottom. Now consider the
graph, call it G1, which corresponds to the partial output f(u|v|w), which is
illustrated in the following picture.

The middle blocks are the vertices in the grey area. Thanks to the assumption

f(u|vw) = f(u|w),

the left blocks are visited in the same order as in G0. Using the other assump-
tion, the right blocks are visited in the same order as in G0. However, the
combined order on both left and right blocks might be different in G0 and G1.

Finally, consider the graph, call it Gi, which corresponds to

f(u|
i times︷ ︸︸ ︷
v|v| · · · |v|w),

which is illustrated below for i = 5.

20

Notice that the nodes in the left part of the graph, which correspond to the left
blocks, are the same in every graph Gi, the same holds for the right blocks; also
the order on left blocks and the order on right blocks are the same. The middle
blocks of f(u|vi|w) correspond to maximal paths which are entirely contained
in the grey area. For a left or right block x and a number i, consider a vertex
σi(x) and a boolean value τi(x), defined as follows.

• σi(x) is the first left or right block after x in the graph Gi (if it exists).

• τi(x) says if the path in Gi from x to σi(x) passes through a vertex in the
grey area.

The sequence of blocks in f(u|vi|w) consists of the left and right blocks listed
according to the function σi, with a middle block appended after those blocks x
for which τi(x) says yes. To prove the lemma, it therefore suffices to show that
for large enough i, the function σi is always the same, likewise for τi.

Define loopi to be the same as σi, but with its domain restricted to blocks
x such that x and σi(x) have the same type (meaning both are left blocks, or
both are right blocks).

Lemma 5.5 The function loopi is the same for large enough i, likewise for τi.

Proof
If in the graph Gi there is a path which connects two blocks on the same type
and does not pass through blocks of the other type, then same path is present in
Gj . This means that if i < j and loopi(x) is defined, then loopi(x) = loopj(x).
Therefore, the functions loopi stabisilse eventually. A similar argument works
for τi. � The following lemma finishes the proof.

Lemma 5.6 The function σi can be uniquely determined from loopi.

Proof
As we have observed, the ordering on left blocks does not depend on i, likewise
for right blocks. In othcolourords, there is a unique ordering <L on left blocks
and a unique ordering<R on right blocks. The function σi is a successor function
(i.e. a function that maps every element, except one, to a successor so that a
linear order is formed) which satisfies the following conditions:

• the ordering induced by σi on left blocks is <L.

• the ordering induced by σi on right blocks is <R.

• σi extends loopi.

• σ − loopi maps left blocks to right blocks and vice versa.

It is not difficult to see that for every loopi, there is at most one such function.
� This compeletes the proof of Lemma 5.4. �

21

6 Further work

It seems possible that the ideas in this paper extend to mso-definable tree-to-
tree transductions. Another direction for further study is the computational
complexity of equivalence. It is possible that for some of the machine models,
by going from standard to origin semantics, one can lower the complexity of
equivalence testing.

References

[AC10] Rajeev Alur and Pavol Cerný. Expressiveness of streaming string
transducers. In Kamal Lodaya and Meena Mahajan, editors,
FSTTCS, volume 8 of LIPIcs, pages 1–12. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2010.

[Ang87] Dana Angluin. Learning regular sets from queries and counterexam-
ples. Inf. Comput., 75(2):87–106, 1987.

[AU70] Alfred V. Aho and Jeffrey D. Ullman. A characterization of two-way
deterministic classes of languages. J. Comput. Syst. Sci., 4(6):523–
538, 1970.

[BE00] Roderick Bloem and Joost Engelfriet. A comparison of tree trans-
ductions defined by monadic second order logic and by attribute
grammars. J. Comput. Syst. Sci., 61(1):1–50, 2000.

[CJ77] Michal Chytil and Vojtech Jákl. Serial composition of 2-way finite-
state transducers and simple programs on strings. In Arto Salomaa
and Magnus Steinby, editors, ICALP, volume 52 of Lecture Notes in
Computer Science, pages 135–147. Springer, 1977.

[DKT96] A. van Deursen, P. Klint, and F. Tip. Origin tracking and its ap-
plications. In A. van Deursen, J. Heering, and P. Klint, editors,
Language Prototyping: An Algebraic Specification Approach, pages
249–294. World Scientific Publishing Co., 1996.

[EH01] Joost Engelfriet and Hendrik Jan Hoogeboom. Mso definable string
transductions and two-way finite-state transducers. ACM Trans.
Comput. Log., 2(2):216–254, 2001.

[EM03] Joost Engelfriet and Sebastian Maneth. Macro tree translations of
linear size increase are mso definable. SIAM J. Comput., 32(4):950–
1006, 2003.

[FGRS13] Emmanuel Filiot, Olivier Gauwin, Pierre-Alain Reynier, and
Frédéric Servais. From two-way to one-way finite state transduc-
ers. In LICS, pages 468–477. IEEE Computer Society, 2013.

22

[Gur82] Eitan M. Gurari. The equivalence problem for deterministic two-way
sequential transducers is decidable. SIAM J. Comput., 11(3):448–
452, 1982.

[LMN10] Aurélien Lemay, Sebastian Maneth, and Joachim Niehren. A learn-
ing algorithm for top-down xml transformations. In Jan Paredaens
and Dirk Van Gucht, editors, PODS, pages 285–296. ACM, 2010.

[MSTV06] Pierre McKenzie, Thomas Schwentick, Denis Thérien, and Heribert
Vollmer. The many faces of a translation. J. Comput. Syst. Sci.,
72(1):163–179, 2006.

[vDKT93] Arie van Deursen, Paul Klint, and Frank Tip. Origin tracking. J.
Symb. Comput., 15(5/6):523–545, 1993.

[WK94] Andreas Weber and Reinhard Klemm. Economy of description for
single-valued transducers. In Patrice Enjalbert, Ernst W. Mayr, and
Klaus W. Wagner, editors, STACS, volume 775 of Lecture Notes in
Computer Science, pages 607–618. Springer, 1994.

23

	1 Regular string to string transducers
	2 A machine independent characterisation
	2.1 Derivatives

	3 Learning
	4 Order-preserving transducers
	5 First-order definable transducers
	6 Further work

