Skip to main content

Bypassing Erdős’ Girth Conjecture: Hybrid Stretch and Sourcewise Spanners

  • Conference paper
Automata, Languages, and Programming (ICALP 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8573))

Included in the following conference series:

Abstract

An (α,β)-spanner of an n-vertex graph G = (V,E) is a subgraph H of G satisfying that dist(u, v, H) ≤ α·dist(u, v, G) + β for every pair (u, v) ∈ V ×V, where dist(u,v,G′) denotes the distance between u and v in G′ ⊆ G. It is known that for every integer k ≥ 1, every graph G has a polynomially constructible (2k − 1,0)-spanner of size O(n 1 + 1/k). This size-stretch bound is essentially optimal by the girth conjecture. Yet, it is important to note that any argument based on the girth only applies to adjacent vertices. It is therefore intriguing to ask if one can “bypass” the conjecture by settling for a multiplicative stretch of 2k − 1 only for neighboring vertex pairs, while maintaining a strictly better multiplicative stretch for the rest of the pairs. We answer this question in the affirmative and introduce the notion of k-hybrid spanners, in which non neighboring vertex pairs enjoy a multiplicative k stretch and the neighboring vertex pairs enjoy a multiplicative (2k − 1) stretch (hence, tight by the conjecture). We show that for every unweighted n-vertex graph G, there is a (polynomially constructible) k-hybrid spanner with O(k 2 ·n 1 + 1/k) edges. This should be compared against the current best (α,β) spanner construction of [5] that obtains (k,k − 1) stretch with O(k ·n 1 + 1/k) edges. An alternative natural approach to bypass the girth conjecture is to allow ourself to take care only of a subset of pairs S ×V for a given subset of vertices S ⊆ V referred to here as sources. Spanners in which the distances in S ×V are bounded are referred to as sourcewise spanners. Several constructions for this variant are provided (e.g., multiplicative sourcewise spanners, additive sourcewise spanners and more).

Recipient of the Google European Fellowship in distributed computing; research supported in part by this Fellowship. Supported in part by the Israel Science Foundation (grant 894/09), United States-Israel Binational Science Foundation (grant 2008348), Israel Ministry of Science and Technology (infrastructures grant), and Citi Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, R., Godfrey, P.B., Har-Peled, S.: Approximate distance queries and compact routing in sparse graphs. In: Proc. INFOCOM (2011)

    Google Scholar 

  2. Aingworth, D., Chekuri, C., Indyk, P., Motwani, R.: Fast estimation of diameter and shortest paths (without matrix multiplication). SIAM J. Comput. 28(4), 1167–1181 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alon, N., Spencer, J.H.: The probabilistic method. Wiley, Chichester (1992)

    Google Scholar 

  4. Althöfer, I., Das, G., Dobkin, D., Joseph, D., Soares, J.: On sparse spanners of weighted graphs. Networks 9(1), 81–100 (1993)

    MATH  Google Scholar 

  5. Baswana, S., Kavitha, T., Mehlhorn, K., Pettie, S.: Additive spanners and (α, β)-spanners. ACM Trans. Algo. 7, A.5 (2010)

    Google Scholar 

  6. Baswana, S., Sen, S.: A simple Linear Time Randomized Algorithm for Computing Sparse Spanners in Weighted Graphs. Random Structures and Algorithms 30(4), 532–563 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Baswana, S., Kavitha, T.: Faster algorithms for approximate distance oracles and all-pairs small stretch paths. In: Proc. FOCS, pp. 591–602 (2006)

    Google Scholar 

  8. Baswana, S., Sen, S.: Approximate distance oracles for unweighted graphs in expected O (n 2) time. ACM Transactions on Algorithms (TALG) 2(4), 557–577 (2006)

    Article  MathSciNet  Google Scholar 

  9. Bollobás, B., Coppersmith, D., Elkin, M.: Sparse distance preservers and additive spanners. SIAM Journal on Discrete Mathematics 19(4), 1029–1055 (2005)

    Article  MathSciNet  Google Scholar 

  10. Coppersmith, D., Elkin, M.: Sparse sourcewise and pairwise distance preservers. SIAM Journal on Discrete Mathematics 20(2), 463–501 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chechik, S.: New Additive Spanners. In: Proc. SODA, vol. 29(5), pp. 498–512 (2013)

    Google Scholar 

  12. Cygan, M., Grandoni, F., Kavitha, T.: On Pairwise Spanners. In: Proc. STACS, pp. 209–220 (2013)

    Google Scholar 

  13. Gavoille, C., Peleg, D.: Compact and localized distributed data structures. Distributed Computing 16(2), 111–120 (2003)

    MathSciNet  Google Scholar 

  14. Dor, D., Halperin, S., Zwick, U.: All-pairs almost shortest paths. SIAM on Computing 29(5), 1740–1759 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Elkin, M., Peleg, D.: (1 + ε, β)-Spanner Constructions for General Graphs. SIAM Journal on Computing 33(3), 608–631 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Elkin, M.: Computing almost shortest paths. ACM Transactions on Algorithms (TALG) 1(2), 283–323 (2005)

    Article  MathSciNet  Google Scholar 

  17. Elkin, M., Emek, Y., Spielman, D.A., Teng, S.H.: Lower stretch spanning trees. In: Proc. STOC, pp. 494–503 (2005)

    Google Scholar 

  18. Erdős, P.: Extremal problems in graph theory. In: Proc. Symp. Theory of Graphs and its Applications, pp. 29–36 (1963)

    Google Scholar 

  19. Kapralov, M., Panigrahy, R.: Spectral sparsification via random spanners. In: ITCS (2012)

    Google Scholar 

  20. Kavitha, T., Varma, N.M.: Small Stretch Pairwise Spanners. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part I. LNCS, vol. 7965, pp. 601–612. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  21. Liestman, A.L., Shermer, T.C.: Additive graph spanners. Networks 23(4), 343–363 (1993)

    MathSciNet  MATH  Google Scholar 

  22. Mendel, M., Naor, A.: Ramsey partitions and proximity data structures. In: FOCS, vol. 23(4), pp. 109–118 (2006)

    Google Scholar 

  23. Parter, M.: Bypassing Erdős’ Girth Conjecture: Hybrid Stretch and Sourcewise Spanners (2014), http://arxiv.org/abs/1404.6835

  24. Pǎtraşcu, M., Roditty, L.: Distance oracles beyond the Thorup-Zwick bound. In: FOCS, pp. 815–823 (2010)

    Google Scholar 

  25. Peleg, D., Schaffer, A.A.: Graph spanners. Journal of Graph Theory 12(1), 99–116 (1989)

    MathSciNet  Google Scholar 

  26. Peleg, D., Ullman, J.D.: An optimal synchronizer for the hypercube. SIAM Journal on Computing 18(4), 740–747 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  27. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM (2000)

    Google Scholar 

  28. Pettie, S.: Low distortion spanners. ACM Transactions on Algorithms (TALG) 6(1) (2009)

    Google Scholar 

  29. Roditty, L., Thorup, M., Zwick, U.: Deterministic constructions of approximate distance oracles and spanners. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 261–272. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  30. Thorup, M.: Undirected single-source shortest paths with positive integer weights in linear time. Journal of the ACM (JACM) 46(3), 362–394 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  31. Thorup, M., Zwick, U.: Approximate distance oracles. Journal of the ACM (JACM) 52(1), 1–24 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Thorup, M., Zwick, U.: Spanners and emulators with sublinear distance errors. In: SODA, pp. 802–809 (2006)

    Google Scholar 

  33. Wenger, R.: Extremal graphs with no C4’s, C6’s, or C10’s. Journal of Combinatorial Theory, 113–116 (1991)

    Google Scholar 

  34. Woodruff, D.P.: Lower bounds for additive spanners, emulators, and more. In: Proc. 47th Symp. on Foundations of Computer Science, pp. 389–398 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Parter, M. (2014). Bypassing Erdős’ Girth Conjecture: Hybrid Stretch and Sourcewise Spanners. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds) Automata, Languages, and Programming. ICALP 2014. Lecture Notes in Computer Science, vol 8573. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43951-7_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43951-7_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43950-0

  • Online ISBN: 978-3-662-43951-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics