Abstract
This paper is about MSO+U, an extension of monadic second-order logic, which has a quantifier that can express that a property of sets is true for arbitrarily large sets. We conjecture that the MSO+U theory of the complete binary tree is undecidable. We prove a weaker statement: there is no algorithm which decides this theory and has a correctness proof in zfc. This is because the theory is undecidable, under a set-theoretic assumption consistent with zfc, namely that there exists of projective well-ordering of 2ω of type ω 1. We use Shelah’s undecidability proof of the MSO theory of the real numbers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bojańczyk, M., Colcombet, T.: Bounds in ω-regularity. In: LICS, pp. 285–296 (2006)
Bojańczyk, M.: A bounding quantifier. In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp. 41–55. Springer, Heidelberg (2004)
Bojańczyk, M.: Weak MSO with the unbounding quantifier. Theory Comput. Syst. 48(3), 554–576 (2011)
Bojańczyk, M., Toruńczyk, S.: Weak MSO+U over infinite trees. In: STACS, pp. 648–660 (2012)
Colcombet, T., Löding, C.: The non-deterministic Mostowski hierarchy and distance-parity automata. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 398–409. Springer, Heidelberg (2008)
Colcombet, T.: The theory of stabilisation monoids and regular cost functions. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part II. LNCS, vol. 5556, pp. 139–150. Springer, Heidelberg (2009)
Feferman, S., Friedman, H.M., Maddy, P., Steel, J.R.: Does mathematics need new axioms? The Bulletin of Symbolic Logic 6(4), 401–446 (2000)
Gurevich, Y., Shelah, S.: Monadic theory of order and topology in ZFC. Annals of Mathematical Logic 23(2-3), 179–198 (1982)
Gurevich, Y.: Existential interpretation II. Archiv für Mathematische Logik und Grundlagenforschung 22(3-4), 103–120 (1980)
Hummel, S., Skrzypczak, M.: The topological complexity of mso+u and related automata models. Fundamenta Informaticae 119(1), 87–111 (2012)
Jech, T.: Set Theory. Springer (2002)
Kechris, A.: Classical descriptive set theory. Springer, New York (1995)
Kripke, S.A.: Semantical analysis of intuitionistic logic I. Studies in Logic and the Foundations of Mathematics (1965)
Martin, D.A.: Borel determinacy. Annals of Mathematics 102(2), 363–371 (1975)
Rabin, M.O.: Decidability of second-order theories and automata on infinite trees. Trans. of the American Math. Soc. 141, 1–35 (1969)
Shelah, S.: The monadic theory of order. The Annals of Mathematics 102(3), 379–419 (1975)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bojańczyk, M., Gogacz, T., Michalewski, H., Skrzypczak, M. (2014). On the Decidability of MSO+U on Infinite Trees. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds) Automata, Languages, and Programming. ICALP 2014. Lecture Notes in Computer Science, vol 8573. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43951-7_5
Download citation
DOI: https://doi.org/10.1007/978-3-662-43951-7_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-43950-0
Online ISBN: 978-3-662-43951-7
eBook Packages: Computer ScienceComputer Science (R0)