Skip to main content

A Coalgebraic Foundation for Coinductive Union Types

  • Conference paper
Automata, Languages, and Programming (ICALP 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8573))

Included in the following conference series:

  • 1281 Accesses

Abstract

This paper introduces a coalgebraic foundation for coinductive types, interpreted as sets of values and extended with set theoretic union. We give a sound and complete characterization of semantic subtyping in terms of inclusion of maximal traces. Further, we provide a technique for reducing subtyping to inclusion between sets of finite traces, based on approximation. We obtain inclusion of tree languages as a sound and complete method to show semantic subtyping of recursive types with basic types, product and union, interpreted coinductively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aczel, P., Adámek, J., Milius, S., Velebil, J.: Infinite trees and completely iterative theories: A coalgebraic view. Theoretical Computer Science 300(1-3), 1–45 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Amadio, R., Cardelli, L.: Subtyping recursive types. ACM Transactions on Programming Languages and Systems 15(4) (1993)

    Google Scholar 

  3. Ancona, D., Lagorio, G.: Coinductive type systems for object-oriented languages. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol. 5653, pp. 2–26. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  4. Ancona, D., Lagorio, G.: Coinductive subtyping for abstract compilation of object-oriented languages into Horn formulas. In: GandALF 2010. EPTCS, vol. 25 (2010)

    Google Scholar 

  5. Ancona, D., Lagorio, G.: Complete coinductive subtyping for abstract compilation of object-oriented languages. In: FTfJP 2010. ACM Digital Library (2010)

    Google Scholar 

  6. Benzaken, V., Castagna, G., Frisch, A.: CDuce: An XML-Centric General-Purpose Language. In: ICFP (2003)

    Google Scholar 

  7. Bonsangue, M., Caltais, G., Goriac, E.-I., Lucanu, D., Rutten, J., Silva, A.: Automatic equivalence proofs for non-deterministic coalgebras. Science of Computer Programming 798(9), 1324–1345 (2013)

    Article  Google Scholar 

  8. Bonsangue, M., Milius, S., Silva, A.: Sound and Complete Axiomatizations of Coalgebraic Language Equivalence. ACM Trans. on Comp. Logic 14(1), 7 (2013)

    MathSciNet  Google Scholar 

  9. Brandt, M., Henglein, F.: Coinductive axiomatization of recursive type equality and subtyping. Fundamentae Informatica 33(4) (1998)

    Google Scholar 

  10. Cîrstea, C.: From Branching to Linear Time, Coalgebraically. In: FICS 2013. EPTCS, vol. 126, pp. 11–27 (2013)

    Google Scholar 

  11. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D., Tison, S., Tommasi, M.: Tree Automata Techniques and Applications, http://www.grappa.univ-lille3.fr/tata

  12. Damm, F.: Subtyping with Union Types, Intersection Types and Recursive Types. In: Hagiya, M., Mitchell, J.C. (eds.) TACS 1994. LNCS, vol. 789, pp. 687–706. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  13. Di Cosmo, R., Pottier, F., Rémy, D.: Subtyping Recursive Types Modulo Associative Commutative Products. In: Urzyczyn, P. (ed.) TLCA 2005. LNCS, vol. 3461, pp. 179–193. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Ésik, Z.: Axiomatizing the equational theory of regular tree languages. Journal of Logic and Algebraic Programming 79(2), 189–213 (2010)

    MATH  MathSciNet  Google Scholar 

  15. Frisch, A., Castagna, G., Benzaken, V.: Semantic Subtyping: dealing set-theoretically with function, union, intersection, and negation types. The Journal of the ACM (2008)

    Google Scholar 

  16. Gapeyev, V., Levin, M.Y., Pierce, B.C.: Recursive subtyping revealed. The Journal of Functional Programming 12(6), 511–548 (2002)

    MATH  MathSciNet  Google Scholar 

  17. van Glabbeek, R.: The linear time - branching time spectrum I. The semantics of concrete, sequential processes. In: Handbook of Process Algebra, pp. 3–99 (2001)

    Google Scholar 

  18. Hasuo, I., Jacobs, B., Sokolova, A.: Generic trace semantics via coinduction. Logical Methods in Computer Science 3, 1–36 (2007)

    MathSciNet  Google Scholar 

  19. Hosoya, H., Vouillon, J., Pierce, B.C.: Regular expression types for XML. ACM Trans. Program. Lang. Syst. 27(1), 46–90 (2005)

    Article  Google Scholar 

  20. Hosoya, H., Pierce, B.C.: XDuce. A statically typed XML processing language. ACM Trans. Internet Techn. 3(2), 117–148 (2003)

    Article  Google Scholar 

  21. Jacobs, B.: Trace Semantics for Coalgebras. In: CMCS 2004. ENTCS, vol. 106 (2004)

    Google Scholar 

  22. Klin, B.: Bialgebras for structural operational semantics: An introduction. Theoretical Computer Science 412(38), 5043–5069 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  23. Rutten, J.: Universal coalgebra: a theory of systems. Theoretical Computer Science 249 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bonsangue, M., Rot, J., Ancona, D., de Boer, F., Rutten, J. (2014). A Coalgebraic Foundation for Coinductive Union Types. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds) Automata, Languages, and Programming. ICALP 2014. Lecture Notes in Computer Science, vol 8573. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43951-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43951-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43950-0

  • Online ISBN: 978-3-662-43951-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics