Abstract
This paper introduces a coalgebraic foundation for coinductive types, interpreted as sets of values and extended with set theoretic union. We give a sound and complete characterization of semantic subtyping in terms of inclusion of maximal traces. Further, we provide a technique for reducing subtyping to inclusion between sets of finite traces, based on approximation. We obtain inclusion of tree languages as a sound and complete method to show semantic subtyping of recursive types with basic types, product and union, interpreted coinductively.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aczel, P., Adámek, J., Milius, S., Velebil, J.: Infinite trees and completely iterative theories: A coalgebraic view. Theoretical Computer Science 300(1-3), 1–45 (2003)
Amadio, R., Cardelli, L.: Subtyping recursive types. ACM Transactions on Programming Languages and Systems 15(4) (1993)
Ancona, D., Lagorio, G.: Coinductive type systems for object-oriented languages. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol. 5653, pp. 2–26. Springer, Heidelberg (2009)
Ancona, D., Lagorio, G.: Coinductive subtyping for abstract compilation of object-oriented languages into Horn formulas. In: GandALF 2010. EPTCS, vol. 25 (2010)
Ancona, D., Lagorio, G.: Complete coinductive subtyping for abstract compilation of object-oriented languages. In: FTfJP 2010. ACM Digital Library (2010)
Benzaken, V., Castagna, G., Frisch, A.: CDuce: An XML-Centric General-Purpose Language. In: ICFP (2003)
Bonsangue, M., Caltais, G., Goriac, E.-I., Lucanu, D., Rutten, J., Silva, A.: Automatic equivalence proofs for non-deterministic coalgebras. Science of Computer Programming 798(9), 1324–1345 (2013)
Bonsangue, M., Milius, S., Silva, A.: Sound and Complete Axiomatizations of Coalgebraic Language Equivalence. ACM Trans. on Comp. Logic 14(1), 7 (2013)
Brandt, M., Henglein, F.: Coinductive axiomatization of recursive type equality and subtyping. Fundamentae Informatica 33(4) (1998)
Cîrstea, C.: From Branching to Linear Time, Coalgebraically. In: FICS 2013. EPTCS, vol. 126, pp. 11–27 (2013)
Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D., Tison, S., Tommasi, M.: Tree Automata Techniques and Applications, http://www.grappa.univ-lille3.fr/tata
Damm, F.: Subtyping with Union Types, Intersection Types and Recursive Types. In: Hagiya, M., Mitchell, J.C. (eds.) TACS 1994. LNCS, vol. 789, pp. 687–706. Springer, Heidelberg (1994)
Di Cosmo, R., Pottier, F., Rémy, D.: Subtyping Recursive Types Modulo Associative Commutative Products. In: Urzyczyn, P. (ed.) TLCA 2005. LNCS, vol. 3461, pp. 179–193. Springer, Heidelberg (2005)
Ésik, Z.: Axiomatizing the equational theory of regular tree languages. Journal of Logic and Algebraic Programming 79(2), 189–213 (2010)
Frisch, A., Castagna, G., Benzaken, V.: Semantic Subtyping: dealing set-theoretically with function, union, intersection, and negation types. The Journal of the ACM (2008)
Gapeyev, V., Levin, M.Y., Pierce, B.C.: Recursive subtyping revealed. The Journal of Functional Programming 12(6), 511–548 (2002)
van Glabbeek, R.: The linear time - branching time spectrum I. The semantics of concrete, sequential processes. In: Handbook of Process Algebra, pp. 3–99 (2001)
Hasuo, I., Jacobs, B., Sokolova, A.: Generic trace semantics via coinduction. Logical Methods in Computer Science 3, 1–36 (2007)
Hosoya, H., Vouillon, J., Pierce, B.C.: Regular expression types for XML. ACM Trans. Program. Lang. Syst. 27(1), 46–90 (2005)
Hosoya, H., Pierce, B.C.: XDuce. A statically typed XML processing language. ACM Trans. Internet Techn. 3(2), 117–148 (2003)
Jacobs, B.: Trace Semantics for Coalgebras. In: CMCS 2004. ENTCS, vol. 106 (2004)
Klin, B.: Bialgebras for structural operational semantics: An introduction. Theoretical Computer Science 412(38), 5043–5069 (2011)
Rutten, J.: Universal coalgebra: a theory of systems. Theoretical Computer Science 249 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bonsangue, M., Rot, J., Ancona, D., de Boer, F., Rutten, J. (2014). A Coalgebraic Foundation for Coinductive Union Types. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds) Automata, Languages, and Programming. ICALP 2014. Lecture Notes in Computer Science, vol 8573. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43951-7_6
Download citation
DOI: https://doi.org/10.1007/978-3-662-43951-7_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-43950-0
Online ISBN: 978-3-662-43951-7
eBook Packages: Computer ScienceComputer Science (R0)