Skip to main content

On the Complexity of Temporal-Logic Path Checking

  • Conference paper
Automata, Languages, and Programming (ICALP 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8573))

Included in the following conference series:

Abstract

Given a formula in a temporal logic such as LTL or MTL, a fundamental problem is the complexity of evaluating the formula on a given finite word. For LTL, the complexity of this task was recently shown to be in \(\mathsf{NC}^{} \) [9]. In this paper, we present an \(\mathsf{NC}^{} \) algorithm for MTL, a quantitative (or metric) extension of LTL, and give an \(\mathsf{AC}^{1} \) algorithm for UTL, the unary fragment of LTL. At the time of writing, MTL is the most expressive logic with an \(\mathsf{NC}^{} \) path-checking algorithm, and UTL is the most expressive fragment of LTL with a more efficient path-checking algorithm than for full LTL (subject to standard complexity-theoretic assumptions). We then establish a connection between LTL path checking and planar circuits, which we exploit to show that any further progress in determining the precise complexity of LTL path checking would immediately entail more efficient evaluation algorithms than are known for a certain class of planar circuits. The connection further implies that the complexity of LTL path checking depends on the Boolean connectives allowed: adding Boolean exclusive or yields a temporal logic with P-complete path-checking problem.

Full version of the paper is available as [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Artho, C., Barringer, H., Goldberg, A., Havelund, K., Khurshid, S., Lowry, M., Pasareanu, C., Rosu, G., Sen, K., Visser, W., Washington, R.: Combining test case generation and runtime verification. Theoretical Computer Science 336(2-3) (2005)

    Google Scholar 

  2. Barrington, D.A.M., Lu, C.-J., Miltersen, P.B., Skyum, S.: On monotone planar circuits. In: Proceedings of Fourteenth Annual IEEE Conference on Computational Complexity (1999)

    Google Scholar 

  3. Bundala, D., Ouaknine, J.: On the complexity of path checking of temporal logics (full version). CoRR, abs/1312.7603

    Google Scholar 

  4. Chakraborty, T., Datta, S.: One-input-face MPCVP is hard for L, but in LogDCFL. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 57–68. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Demri, S., Schnoebelen, P.: The complexity of propositional linear temporal logics in simple cases. Information and Computation 174(1), 84–103 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Finkbeiner, B., Sipma, H.: Checking finite traces using alternating automata. Formal Methods in System Design 24(2), 101–127 (2004)

    Article  MATH  Google Scholar 

  7. Goldschlager, L.M.: The monotone and planar circuit value problems are log space complete for P. SIGACT News 9 (July 1977)

    Google Scholar 

  8. Karp, R.M., Ramachandran, V.: Parallel algorithms for shared-memory machines. In: Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity (A) (1990)

    Google Scholar 

  9. Kuhtz, L., Finkbeiner, B.: LTL path checking is efficiently parallelizable. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part II. LNCS, vol. 5556, pp. 235–246. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Kuhtz, L., Finkbeiner, B.: Efficient parallel path checking for linear-time temporal logic with past and bounds. Logical Methods in Computer Science 8(4) (2012)

    Google Scholar 

  11. Limaye, N., Mahajan, M., Sarma, J.M.N.: Evaluating monotone circuits on cylinders, planes and tori. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 660–671. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and FTRTFT 2004. LNCS, vol. 3253, pp. 152–166. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. Markey, N., Schnoebelen, P.: Model checking a path (Preliminary report). In: Amadio, R.M., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 251–265. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  14. Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event systems using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 223–235. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bundala, D., Ouaknine, J. (2014). On the Complexity of Temporal-Logic Path Checking. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds) Automata, Languages, and Programming. ICALP 2014. Lecture Notes in Computer Science, vol 8573. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43951-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43951-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43950-0

  • Online ISBN: 978-3-662-43951-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics