Skip to main content

Parameterised Linearisability

  • Conference paper
Automata, Languages, and Programming (ICALP 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8573))

Included in the following conference series:

Abstract

Many concurrent libraries are parameterised, meaning that they implement generic algorithms that take another library as a parameter. In such cases, the standard way of stating the correctness of concurrent libraries via linearisability is inapplicable. We generalise linearisability to parameterised libraries and investigate subtle trade-offs between the assumptions that such libraries can make about their environment and the conditions that linearisability has to impose on different types of interactions with it. We prove that the resulting parameterised linearisability is closed under instantiating parameter libraries and composing several non-interacting libraries, and furthermore implies observational refinement. These results allow modularising the reasoning about concurrent programs using parameterised libraries and confirm the appropriateness of the proposed definitions. We illustrate the applicability of our results by proving the correctness of a parameterised library implementing flat combining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cerone, A., Gotsman, A., Yang, H.: Parameterised linearisability (extended version), http://software.imdea.org/~gotsman/

  2. Filipovic, I., O’Hearn, P.W., Rinetzky, N., Yang, H.: Abstraction for concurrent objects. Theor. Comput. Sci. 411(51-52) (2010)

    Google Scholar 

  3. Ghica, D.R., Murawski, A.S.: Angelic semantics of fine-grained concurrency. Ann. Pure Appl. Logic 151(2-3) (2008)

    Google Scholar 

  4. Gotsman, A., Yang, H.: Liveness-preserving atomicity abstraction. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 453–465. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  5. Gotsman, A., Yang, H.: Linearizability with ownership transfer. Logical Methods in Computer Science 9 (2013)

    Google Scholar 

  6. Hendler, D., Incze, I., Shavit, N., Tzafrir, M.: Flat combining and the synchronization-parallelism tradeoff. In: SPAA (2010)

    Google Scholar 

  7. Herlihy, M., Koskinen, E.: Transactional boosting: a methodology for highly-concurrent transactional objects. In: PPOPP (2008)

    Google Scholar 

  8. Herlihy, M., Wing, J.M.: Linearizability: A correctness condition for concurrent objects. ACM Trans. Program. Lang. Syst. 12(3) (1990)

    Google Scholar 

  9. Hyland, J.M.E., Luke Ong, C.-H.: On full abstraction for PCF: I, II, and III. Inf. Comput. 163(2) (2000)

    Google Scholar 

  10. Jagadeesan, R., Petri, G., Pitcher, C., Riely, J.: Quarantining weakness. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 492–511. Springer, Heidelberg (2013)

    Google Scholar 

  11. Jeffrey, A., Rathke, J.: A fully abstract testing semantics for concurrent objects. Theor. Comput. Sci. 338(1-3) (2005)

    Google Scholar 

  12. Laird, J.: A game semantics of idealized CSP. ENTCS 45 (2001)

    Google Scholar 

  13. Russo, C.V.: The Joins Concurrency Library. In: Hanus, M. (ed.) PADL 2007. LNCS, vol. 4354, pp. 260–274. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Turon, A., Dreyer, D., Birkedal, L.: Unifying refinement and Hoare-style reasoning in a logic for higher-order concurrency. In: ICFP (2013)

    Google Scholar 

  15. Yang, H., O’Hearn, P.W.: A semantic basis for local reasoning. In: Nielsen, M., Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 402–416. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cerone, A., Gotsman, A., Yang, H. (2014). Parameterised Linearisability. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds) Automata, Languages, and Programming. ICALP 2014. Lecture Notes in Computer Science, vol 8573. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43951-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43951-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43950-0

  • Online ISBN: 978-3-662-43951-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics