Skip to main content

Multi-touch Graph-Based Interaction for Knowledge Discovery on Mobile Devices: State-of-the-Art and Future Challenges

  • Chapter
Interactive Knowledge Discovery and Data Mining in Biomedical Informatics

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8401))

Abstract

Graph-based knowledge representation is a hot topic for some years and still has a lot of research potential, particularly in the advancement in the application of graph-theory for creating benefits in the biomedical domain. Graphs are most powerful tools to map structures within a given data set and to recognize relationships between specific data objects. Many advantages of graph-based data structures can be found in the applicability of methods from network analysis, topology and data mining (e.g. small-world phenomenon, cluster analysis). In this paper we present the state-of-the-art in graph-based approaches for multi-touch interaction on mobile devices and we highlight some open problems to stimulate further research and future developments. This is particularly important in the medical domain, as a conceptual graph analysis may provide novel insights on hidden patterns in data, hence support interactive knowledge discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Harary, F.: Structural models, An introduction to the theory of directed graphs. Wiley (1965)

    Google Scholar 

  2. Strogatz, S.H.: Exploring complex networks. Nature 410(6825), 268–276 (2001)

    Article  Google Scholar 

  3. Dorogovtsev, S., Mendes, J.: Evolution of networks: From biological nets to the Internet and WWW. Oxford University Press (2003)

    Google Scholar 

  4. Dehmer, M., Emmert-Streib, F., Mehler, A.: Towards an Information Theory of Complex Networks: Statistical Methods and Applications. Birkhaeuser Boston (2011)

    Google Scholar 

  5. Holzinger, A., Dehmer, M., Jurisica, I.: Knowledge discovery and interactive data mining in bioinformatics - state-of-the-art, future challenges and research directions. BMC Bioinformatics 15(suppl. 6), 11 (2014)

    Google Scholar 

  6. Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kleinberg, J.: Navigation in a small world. Nature 406(6798), 845–845 (2000)

    Article  Google Scholar 

  8. Koontz, W., Narendra, P., Fukunaga, K.: A graph-theoretic approach to nonparametric cluster analysis. IEEE Transactions on Computers 100(9), 936–944 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wittkop, T., Emig, D., Truss, A., Albrecht, M., Boecker, S., Baumbach, J.: Comprehensive cluster analysis with transitivity clustering. Nature Protocols 6(3), 285–295 (2011)

    Article  Google Scholar 

  10. Holzinger, A.: Human computer interaction & knowledge discovery (hci-kdd): What is the benefit of bringing those two fields to work together? In: Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl, E., Xu, L. (eds.) CD-ARES 2013. LNCS, vol. 8127, pp. 319–328. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Toussaint, G.T.: The relative neighbourhood graph of a finite planar set. Pattern Recognition 12(4), 261–268 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  12. Holzinger, A.: Finger instead of mouse: Touch screens as a means of enhancing universal access. In: Carbonell, N., Stephanidis, C. (eds.) UI4ALL 2002. LNCS, vol. 2615, pp. 387–397. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. Lee, S., Buxton, W., Smith, K.: A multi-touch three dimensional touch-sensitive tablet. In: ACM SIGCHI Bulletin, vol. 16, pp. 21–25. ACM (1985)

    Google Scholar 

  14. Cook, D., Holder, L.B.: Mining Graph Data. Wiley Interscience (2007)

    Google Scholar 

  15. Chakrabarti, D., Faloutsos, C.: Graph mining: Laws, generators, and algorithms. ACM Computing Surveys (CSUR) 38(1), 2 (2006)

    Article  Google Scholar 

  16. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, New York (2001)

    MATH  Google Scholar 

  17. Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology. Cambridge University Press (1997)

    Google Scholar 

  18. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  19. Emmert-Streib, F., Dehmer, M.: Networks for systems biology: Conceptual connection of data and function. IET Systems Biology 5, 185–207 (2011)

    Article  Google Scholar 

  20. Bonchev, D., Mekenyan, O., Trinajstić, N.: Topological characterization of cyclic structures. International Journal of Quantum Chemistry 17(5), 845–893 (1980)

    Article  Google Scholar 

  21. Schutte, M., Dehmer, M.: Large-scale analysis of structural branching measures. Journal of Mathematical Chemistry 52(3), 805–819 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kirby, E.C.: Sensitivity of topological indexes to methyl group branching in octanes and azulenes, or what does a topological index index? Journal of Chemical Information and Computer Sciences 34(5), 1030–1035 (1994)

    Google Scholar 

  23. Bonchev, D., Trinajstić, N.: Information theory, distance matrix, and molecular branching. The Journal of Chemical Physics 67(10), 4517–4533 (1977)

    Article  Google Scholar 

  24. Wiener, H.: Structural determination of paraffin boiling points. J. Am. Chem. Soc. 69(1), 17–20 (1947)

    Article  Google Scholar 

  25. Buxton, B.: A touching story: A personal perspective on the history of touch interfaces past and future. In: SID Symposium, vol. 41, pp. 444–448. Wiley (2010)

    Google Scholar 

  26. Cetin, G., Bedi, R.: Multi-touch Technologies. NUIgroup.com (2009)

    Google Scholar 

  27. Alden, D.G., Daniels, R.W., Kanarick, A.F.: Keyboard design and operation: A review of the major issues. Human Factors: The Journal of the Human Factors and Ergonomics Society 14(4), 275–293 (1972)

    Google Scholar 

  28. Mehta, N., Smith, K., Holmes, F.: Feature extraction as a tool for computer input. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 1982), vol. 7, pp. 818–820. IEEE (1982)

    Google Scholar 

  29. Holzinger, A., Searle, G., Peischl, B., Debevc, M.: An answer to “Who needs a stylus?” on handwriting recognition on mobile devices. In: Obaidat, M.S., Sevillano, J.L., Filipe, J. (eds.) ICETE 2011. CCIS, vol. 314, pp. 156–167. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  30. Moscovich, T.: Multi-touch interaction. In: Conference on Human Factors in Computing Systems: CHI 2006 Extended Abstracts on Human Factors in Computing Systems, vol. 22, pp. 1775–1778 (2006)

    Google Scholar 

  31. Wang, F., Ren, X.S.: Empirical evaluation for finger input properties in multi-touch interaction. In: Greenberg, S., Hudson, S.E., Hinkley, K., RingelMorris, M., Olsen, D.R. (eds.) Proceedings of the 27th Annual Chi Conference on Human Factors in Computing Systems, pp. 1063–1072. Assoc Computing Machinery (2009)

    Google Scholar 

  32. Park, W., Han, S.H.: Intuitive multi-touch gestures for mobile web browsers. Interacting With Computers 25(5), 335–350 (2013)

    Article  Google Scholar 

  33. Holzinger, A., Höller, M., Schedlbauer, M., Urlesberger, B.: An investigation of finger versus stylus input in medical scenarios. In: Luzar-Stiffler, V., Dobric, V.H., Bekic, Z. (eds.) ITI 2008: 30th International Conference on Information Technology Interfaces, pp. 433–438. IEEE (2008)

    Google Scholar 

  34. Crisan, S., Tarnovan, I.G., Tebrean, B., Crisan, T.E.: Optical multi-touch system for patient monitoring and medical data analysis. In: Vlad, S., Ciupa, R., Nicu, A.I. (eds.) MEDITECH 2009. IFMBE Proceedings, vol. 26, pp. 279–282. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  35. Lundstrom, C., Rydell, T., Forsell, C., Persson, A., Ynnerman, A.: Multi-touch table system for medical visualization: Application to orthopedic surgery planning. IEEE Transactions on Visualization and Computer Graphics 17(12), 1775–1784 (2011)

    Article  Google Scholar 

  36. Crisan, S., Tarnovan, I.G.: Optimization of a multi-touch sensing device for biomedical applications. In: Vlaicu, A., Brad, S. (eds.) Interdisciplinary Research in Engineering: Steps Towards Breakthrough Innovation for Sustainable Development. Advanced Engineering Forum, vol. 8-9, pp. 545–552. Trans Tech Publications Ltd, Stafa-Zurich (2013)

    Google Scholar 

  37. Xie, Q.Q., Liang, G.Y., Tang, C., Wu, X.Y.: A fast and robust fingertips tracking algorithm for vision-based multi-touch interaction. In: 10th IEEE International Conference on Control and Automation (ICCA), pp. 1346–1351 (2013)

    Google Scholar 

  38. Chen, T.T.H., Fels, S., Min, S.S.: Flowfield and beyond: applying pressure-sensitive multi-point touchpad interaction. In: Proceedings of 2003 International Conference on Multimedia and Expo., ICME 2003, vol. 1, pp. 49–52 (July 2003)

    Google Scholar 

  39. Hodges, S., Izadi, S., Butler, A., Rrustemi, A., Buxton, B.: Thinsight: Versatile multi-touch sensing for thin form-factor displays. In: Proceedings of the 20th Annual ACM Symposium on User Interface Software and Technology, UIST 2007, pp. 259–268. ACM (2007)

    Google Scholar 

  40. Baudel, T., Beaudouinlafon, M.: Charade - remote control of objects using free-hand gestures. Communications of the ACM 36(7), 28–35 (1993)

    Article  Google Scholar 

  41. Long Jr., A.C., Landay, J.A., Rowe, L.A.: Implications for a gesture design tool. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 40–47. ACM (1999)

    Google Scholar 

  42. Alvarado, C., Davis, R.: Sketchread: A multi-domain sketch recognition engine. In: Proceedings of the 17th Annual ACM Symposium on User Interface Software and Technology, pp. 23–32. ACM (2004)

    Google Scholar 

  43. Paulson, B., Hammond, T.: Paleosketch: Accurate primitive sketch recognition and beautification. In: Proceedings of the 13th International Conference on Intelligent user Interfaces, pp. 1–10. ACM (2008)

    Google Scholar 

  44. Fernández-Pacheco, D., Albert, F., Aleixos, N., Conesa, J.: A new paradigm based on agents applied to free-hand sketch recognition. Expert Systems with Applications 39(8), 7181–7195 (2012)

    Article  Google Scholar 

  45. Wu, M., Shen, C., Ryall, K., Forlines, C., Balakrishnan, R.: Gesture registration, relaxation, and reuse for multi-point direct-touch surfaces. In: First IEEE International Workshop on Horizontal Interactive Human-Computer Systems, TableTop 2006. IEEE (2006)

    Google Scholar 

  46. Wobbrock, J.O., Morris, M.R., Wilson, A.D.: User-defined gestures for surface computing. In: Greenberg, S., Hudson, S.E., Hinkley, K., RingelMorris, M., Olsen, D.R. (eds.) CHI2009: Proceedings of the 27th Annual Conference on Human Factors in Computing Systems, pp. 1083–1092. Assoc Computing Machinery (2009)

    Google Scholar 

  47. Park, W., Han, S.H.: An analytical approach to creating multitouch gesture vocabularies in mobile devices: A case study for mobile web browsing gestures. International Journal of Human-Computer Interaction 30(2), 126–141

    Google Scholar 

  48. Kammer, D., Wojdziak, J., Keck, M., Groh, R., Taranko, S.: Towards a formalization of multi-touch gestures. In: ACM International Conference on Interactive Tabletops and Surfaces, ITS 2010, pp. 49–58. ACM (2010)

    Google Scholar 

  49. Hoggan, E., Williamson, J., Oulasvirta, A., Nacenta, M., Kristensson, P.O., Lehtiö, A.: Multi-touch rotation gestures: Performance and ergonomics. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2013, pp. 3047–3050. ACM, New York (2013)

    Google Scholar 

  50. Schmidt, S., Nacenta, M., Dachselt, R., Carpendale, S.: A set of multi-touch graph interaction techniques. In: ACM International Conference on Interactive Tabletops and Surfaces, pp. 113–116. ACM (2010)

    Google Scholar 

  51. Wong, N., Carpendale, S., Greenberg, S.: Edgelens: An interactive method for managing edge congestion in graphs. In: IEEE Symposium on Information Visualization, INFOVIS 2003, pp. 51–58. IEEE (October 2003)

    Google Scholar 

  52. Purchase, H.C., Carrington, D., Allder, J.: Evaluating graph drawing aesthetics: Defining and exploring a new empirical research area. Computer Graphics and Multimedia, 145–178 (2004)

    Google Scholar 

  53. Cockburn, A., Karlson, A., Bederson, B.B.: A review of overview plus detail, zooming, and focus plus context interfaces. ACM Computing Surveys, 41–1 (2008)

    Google Scholar 

  54. Isenberg, P., Carpendale, S., Bezerianos, A., Henry, N., Fekete, J.D.: Coconuttrix: Collaborative retrofitting for information visualization. IEEE Computer Graphics and Applications 29(5), 44–57 (2009)

    Article  Google Scholar 

  55. Herman, I., Melanon, G., Marshall, M.: Graph visualization and navigation in information visualization: A survey. IEEE Transactions on Visualization and Computer Graphics 6(1), 24–43 (2000)

    Article  Google Scholar 

  56. Tollis, I., Eades, P., Di Battista, G., Tollis, L.: Graph drawing: Algorithms for the visualization of graphs, vol. 1. Prentice-Hall, New York (1998)

    MATH  Google Scholar 

  57. Purchase, H.C.: Which aesthetic has the greatest effect on human understanding? In: DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 248–261. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  58. Bederson, B.B., Hollan, J.D.: Pad++: A zooming graphical interface for exploring alternate interface physics. In: Proceedings of the 7th Annual ACM Symposium on User Interface Software and Technology, pp. 17–26. ACM (1994)

    Google Scholar 

  59. Sarkar, M., Brown, M.H.: Graphical fisheye views of graphs. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 83–91. ACM (1992)

    Google Scholar 

  60. Purchase, H.C.: Metrics for graph drawing aesthetics. Journal of Visual Languages & Computing 13(5), 501–516 (2002)

    Article  Google Scholar 

  61. Wong, N., Carpendale, S.: Supporting interactive graph exploration with edge plucking. In: Proceedings of SPIE, vol. 6495, pp. 235–246 (2007)

    Google Scholar 

  62. Holten, D.: Hierarchical edge bundles: Visualization of adjacency relations in hierarchical data. IEEE Transactions on Visualization and Computer Graphics 12(5), 741–748 (2006)

    Article  Google Scholar 

  63. Moscovich, T., Chevalier, F., Henry, N., Pietriga, E., Fekete, J.: Topology-aware navigation in large networks. In: Proceedings of the 27th International Conference on Human Factors in Computing Systems, pp. 2319–2328. ACM (2009)

    Google Scholar 

  64. Müller, R.: Medikamente und Richtwerte in der Notfallmedizin, 11th edn. Ralf Müller Verlag, Graz (2012)

    Google Scholar 

  65. Soss, M.A.: On the size of the euclidean sphere of influence graph. In: Proceedings Eleventh Canadian Conference on Computational Geometry, pp. 43–46 (1999)

    Google Scholar 

  66. Guibas, L., Pach, J., Sharir, M.: Sphere-of-influence graphs in higher dimensions. Intuitive Geometry 63, 131–137 (1994)

    MathSciNet  MATH  Google Scholar 

  67. Dwyer, R.A.: The expected size of the sphere-of-influence graph. Computational Geometry 5(3), 155–164 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  68. Dehmer, M.: Information theory of networks. Symmetry 3, 767–779 (2012)

    Article  MathSciNet  Google Scholar 

  69. Mowshowitz, A.: Entropy and the complexity of the graphs I: An index of the relative complexity of a graph. Bull. Math. Biophys. 30, 175–204 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  70. Holzinger, A., Ofner, B., Stocker, C., Calero Valdez, A., Schaar, A.K., Ziefle, M., Dehmer, M.: On graph entropy measures for knowledge discovery from publication network data. In: Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl, E., Xu, L. (eds.) CD-ARES 2013. LNCS, vol. 8127, pp. 354–362. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  71. Dehmer, M., Grabner, M., Varmuza, K.: Information indices with high discriminative power for graphs. PLoS ONE 7, e31214 (2012)

    Google Scholar 

  72. Dehmer, M., Grabner, M., Mowshowitz, A., Emmert-Streib, F.: An efficient heuristic approach to detecting graph isomorphism based on combinations of highly discriminating invariants. Advances in Computational Mathematics (2012)

    Google Scholar 

  73. Ma, K.L., Muelder, C.W.: Large-scale graph visualization and analytics. Computer 46(7), 39–46 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Holzinger, A., Ofner, B., Dehmer, M. (2014). Multi-touch Graph-Based Interaction for Knowledge Discovery on Mobile Devices: State-of-the-Art and Future Challenges. In: Holzinger, A., Jurisica, I. (eds) Interactive Knowledge Discovery and Data Mining in Biomedical Informatics. Lecture Notes in Computer Science, vol 8401. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43968-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43968-5_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43967-8

  • Online ISBN: 978-3-662-43968-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics