Abstract
We live in the era of data and need tools to discover valuable information in large amounts of data. The goal of exploratory data mining is to provide as much insight in given data as possible. Within this field, pattern set mining aims at revealing structure in the form of sets of patterns. Although pattern set mining has shown to be an effective solution to the infamous pattern explosion, important challenges remain.
One of the key challenges is to develop principled methods that allow user- and task-specific information to be taken into account, by directly involving the user in the discovery process. This way, the resulting patterns will be more relevant and interesting to the user. To achieve this, pattern mining algorithms will need to be combined with techniques from both visualisation and human-computer interaction. Another challenge is to establish techniques that perform well under constrained resources, as existing methods are usually computationally intensive. Consequently, they are only applied to relatively small datasets and on fast computers.
The ultimate goal is to make pattern mining practically more useful, by enabling the user to interactively explore the data and identify interesting structure. In this paper we describe the state-of-the-art, discuss open problems, and outline promising future directions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrawal, R., Imielinksi, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proceedings of the SIGMOD 1993, pp. 207–216. ACM (1993)
Bringmann, B., Nijssen, S., Tatti, N., Vreeken, J., Zimmermann, A.: Mining sets of patterns: Next generation pattern mining. In: Tutorial at ICDM 2011(2011)
Guns, T., Nijssen, S., Raedt, L.D.: Itemset mining: A constraint programming perspective. Artif. Intell. 175(12-13), 1951–1983 (2011)
Chau, D.H., Vreeken, J., van Leeuwen, M., Faloutsos, C. (eds.): Proceedings of the ACM SIGKDD Workshop on Interactive Data Exploration and Analytics, IDEA 2013. ACM, New York (2013)
Atzmüller, M., Puppe, F.: Semi-automatic visual subgroup mining using vikamine. Journal of Universal Computer Science 11(11), 1752–1765 (2005)
Lucas, J.P., Jorge, A.M., Pereira, F., Pernas, A.M., Machado, A.A.: A tool for interactive subgroup discovery using distribution rules. In: Neves, J., Santos, M.F., Machado, J.M. (eds.) EPIA 2007. LNCS (LNAI), vol. 4874, pp. 426–436. Springer, Heidelberg (2007)
Goethals, B., Moens, S., Vreeken, J.: MIME: A framework for interactive visual pattern mining. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011, Part III. LNCS (LNAI), vol. 6913, pp. 634–637. Springer, Heidelberg (2011)
Tuzhilin, A.: On subjective measures of interestingness in knowledge discovery. In: Proceedings of KDD 1995, pp. 275–281 (1995)
Kontonasios, K.N., Spyropoulou, E., De Bie, T.: Knowledge discovery interestingness measures based on unexpectedness. Wiley Int. Rev. Data Min. and Knowl. Disc. 2(5), 386–399 (2012)
De Bie, T.: An information theoretic framework for data mining. In: Proceedings of KDD 2011, pp. 564–572 (2011)
Holzinger, A.: Human-computer interaction and knowledge discovery (hci-kdd): What is the benefit of bringing those two fields to work together? In: Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl, E., Xu, L. (eds.) CD-ARES 2013. LNCS, vol. 8127, pp. 319–328. Springer, Heidelberg (2013)
Keim, D.A., Andrienko, G., Fekete, J.-D., Görg, C., Kohlhammer, J., Melançon, G.: Visual analytics: Definition, process, and challenges. In: Kerren, A., Stasko, J.T., Fekete, J.-D., North, C. (eds.) Information Visualization. LNCS, vol. 4950, pp. 154–175. Springer, Heidelberg (2008)
Klösgen, W.: Explora: A Multipattern and Multistrategy Discovery Assistant. In: Advances in Knowledge Discovery and Data Mining, pp. 249–271 (1996)
Wrobel, S.: An algorithm for multi-relational discovery of subgroups. In: Komorowski, J., Żytkow, J. (eds.) PKDD 1997. LNCS, vol. 1263, pp. 78–87. Springer, Heidelberg (1997)
Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering frequent closed itemsets for association rules. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 398–416. Springer, Heidelberg (1998)
Han, J., Cheng, H., Xin, D., Yan, X.: Frequent pattern mining: Current status and future directions. Data Mining and Knowledge Discovery 15(1), 55–86 (2007)
Peng, H., Long, F., Ding, C.: Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(8), 1226–1238 (2005)
Vreeken, J., van Leeuwen, M., Siebes, A.: Krimp: mining itemsets that compress. Data Mining and Knowledge Discovery 23(1), 169–214 (2011)
van Leeuwen, M., Vreeken, J., Siebes, A.: Compression picks item sets that matter. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 585–592. Springer, Heidelberg (2006)
van Leeuwen, M., Vreeken, J., Siebes, A.: Identifying the components. Data Min. Knowl. Discov. 19(2), 173–292 (2009)
Vreeken, J., van Leeuwen, M., Siebes, A.: Characterising the difference. In: Proceedings of the KDD 2007, pp. 765–774 (2007)
Kralj Novak, P., Lavrač, N., Webb, G.: Supervised descriptive rule discovery: A unifying survey of contrast set, emerging pattern and subgroup mining. Journal of Machine Learning Research 10, 377–403 (2009)
Bhuiyan, M., Mukhopadhyay, S., Hasan, M.A.: Interactive pattern mining on hidden data: A sampling-based solution. In: Proceedings of CIKM 2012, pp. 95–104. ACM, New York (2012)
Dzyuba, V., van Leeuwen, M.: Interactive discovery of interesting subgroup sets. In: Tucker, A., Höppner, F., Siebes, A., Swift, S. (eds.) IDA 2013. LNCS, vol. 8207, pp. 150–161. Springer, Heidelberg (2013)
van Leeuwen, M., Knobbe, A.: Diverse subgroup set discovery. Data Mining and Knowledge Discovery 25, 208–242 (2012)
Galbrun, E., Miettinen, P.: A Case of Visual and Interactive Data Analysis: Geospatial Redescription Mining. In: Instant Interactive Data Mining Workshop at ECML-PKDD 2012 (2012)
Boley, M., Mampaey, M., Kang, B., Tokmakov, P., Wrobel, S.: One Click Mining — Interactive Local Pattern Discovery through Implicit Preference and Performance Learning. In: Interactive Data Exploration and Analytics (IDEA) workshop at KDD 2013, pp. 28–36 (2013)
Dzyuba, V., van Leeuwen, M., Nijssen, S., Raedt, L.D.: Active preference learning for ranking patterns. In: Proceedings of ICTAI 2013, pp. 532–539 (2013)
Rüping, S.: Ranking interesting subgroups. In: Proceedings of ICML 2009, pp. 913–920 (2009)
Bie, T.D.: Maximum entropy models and subjective interestingness: an application to tiles in binary databases. Data Min. Knowl. Discov. 23(3), 407–446 (2011)
Spyropoulou, E., Bie, T.D., Boley, M.: Interesting pattern mining in multi-relational data. Data Min. Knowl. Discov. 28(3), 808–849 (2014)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
van Leeuwen, M. (2014). Interactive Data Exploration Using Pattern Mining. In: Holzinger, A., Jurisica, I. (eds) Interactive Knowledge Discovery and Data Mining in Biomedical Informatics. Lecture Notes in Computer Science, vol 8401. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43968-5_9
Download citation
DOI: https://doi.org/10.1007/978-3-662-43968-5_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-43967-8
Online ISBN: 978-3-662-43968-5
eBook Packages: Computer ScienceComputer Science (R0)