Skip to main content

Towards Mobile Sensor-Aware Crowdsourcing: Architecture, Opportunities and Challenges

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8505))

Included in the following conference series:

Abstract

The recent success of general purpose crowdsourcing platforms like Amazon Mechanical Turk paved the way for a plethora of crowd-enabled applications and workflows. However, the variety of tasks which can be approached via such crowdsourcing platforms is limited by constraints of the web-based interface. In this paper, we propose mobile user interface clients. Switching to mobile clients has the potential to radically change the way crowdsourcing is performed, and allows for a new breed of crowdsourcing tasks. Here, especially the ability to tap into the wealth of precision sensors embedded in modern mobile hardware is a game changer. In this paper, we will discuss opportunities and challenges resulting from such a platform, and discuss a reference architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Behrend, T.S., Sharek, D.J., Meade, A.W., Wiebe, E.N.: The viability of crowdsourcing for survey research. Behav. Res. Meth. 43(3), 800–813 (2011)

    Article  Google Scholar 

  2. Bonabeau, E.: Decisions 2.0: the power of collective intelligence. MIT Sloan. Manag. Rev. 50, 45–52 (2009)

    Google Scholar 

  3. Borst, I.: Understanding crowdsourcing - effects of motivation and rewards on participation and performance in vountary online activities. Ph.D. thesis, Erasmus research institute of Management, Rotterdam School of Management, Erasmus School of Economics, Erasmus University Rotterdam (2010)

    Google Scholar 

  4. den Ende, J.V., Villarroel, A., Tucci, C.: Strategic crowdsourcing, orchestrating innovation through the cream of the crowd. In: Panel Symposium, Academy of Management Conference (2009)

    Google Scholar 

  5. Eagle, N.: txteagle: mobile crowdsourcing. In: Aykin, Nuray (ed.) IDGD 2009. LNCS, vol. 5623, pp. 447–456. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Franklin, M.J., Kossmann, D., Kraska, T., Ramesh, S., Xin, R.: Crowddb: answering queries with crowdsourcing. In: Proceedings of the 2011 ACM SIGMOD International Conference on Management of Data, pp. 61–72. ACM (2011)

    Google Scholar 

  7. Gupta, A., Thies, W., Cutrell, E., Balakrishnan, R.: mclerk: Enabling mobile crowdsourcing in developing regions. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’12, pp. 1843–1852. ACM (2012)

    Google Scholar 

  8. He, J., van Ossenbruggen, J., de Vries, A.P.: Do you need experts in the crowd?: a case study in image annotation for marine biology. In: Proceedings of the 10th Conference on Open Research Areas in Information Retrieval, pp. 57–60 (2013)

    Google Scholar 

  9. Howe, J.: The rise of crowdsourcing 14(6) (2009). http://www.wired.com/wired/archive/14.06/crowds.html

  10. Jouret, G.: Inside cisco’s search for the next big idea. Harvard Bus. Rev. 87, 43–45 (2009)

    Google Scholar 

  11. Kittur, A., Chi, E.H., Suh, B.: Crowdsourcing user studies with mechanical turk. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 453–456. ACM (2008)

    Google Scholar 

  12. Komninos, N.: Intelligent Cities: Innovation, Knowledge Systems and Digital Spaces. Spon Press, London (2002)

    Google Scholar 

  13. Komninos, N.: Intelligent cities: towards interactive and global innovation environments. Int. J. Innovation Reg. Dev. 1(4), 337–355 (2009)

    Article  Google Scholar 

  14. Kunze, K., Kawaichi, H., Yoshimura, K., Kise, K.: Towards inferring language expertise using eye tracking. In: CHI’13 Extended Abstracts on Human Factors in Computing Systems, pp. 217–222. ACM (2013)

    Google Scholar 

  15. Lampel, J., Bhalla, A.: The role of status seeking in online communities: giving the gift of experience. J. Comput. Mediated Commun. 122 (2007). http://jcmc.indiana.edu/vol12/issue2/lampel.html

  16. Lofi, C., Selke, J., Balke, W.-T.: Information extraction meets crowdsourcing: a promising couple. Datenbank-Spektrum 12(2), 109–120 (2012)

    Article  Google Scholar 

  17. Lukowicz, P., Pentland, A., Ferscha, A.: From context awareness to socially aware computing. IEEE Pervasive Comput. 11(1), 32–41 (2012)

    Article  Google Scholar 

  18. Narula, P., Gutheim, P., Rolnitzky, D., Kulkarni, A., Hartmann, B.: Mobileworks: a mobile crowdsourcing platform for workers at the bottom of the pyramid. In: Human Computation (2011)

    Google Scholar 

  19. Schuermann, D., Sigg, S.: Secure communication based on ambient audio. IEEE Trans. Mob. Comput. 12(2), 358–370 (2013)

    Article  Google Scholar 

  20. Selke, J., Lofi, C., Balke, W.-T.: Pushing the boundaries of crowd-enabled databases with query-driven schema expansion. Proc. VLDB Endowment 5(6), 538–549 (2012)

    Article  Google Scholar 

  21. Sigg, S., Schuermann, D., Ji, Y.: Pintext: a framework for secure communication based on context. In: Proceedings of the Eighth Annual International ICST Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services (MobiQuitous 2011) (2011)

    Google Scholar 

  22. Sigg, S., Gordon, D., von Zengen, G., Beigl, M., Haseloff, S., David, K.: Investigation of context prediction accuracy for different context abstraction levels. IEEE Trans. Mob. Comput. 11(6), 1047–1059 (2012)

    Article  Google Scholar 

  23. Sigg, S., Scholz, M., Shi, S., Ji, Y., Beigl, M.: Rf-sensing of activities from non-cooperative subjects in device-free recognition systems using ambient and local signals. IEEE Trans. Mob. Comput. 13(4) (2013). doi http://doi.ieeecomputersociety.org/10.1109/TMC.2013.28

  24. Sigg, S., Blanke, U., Troester, G.: The telepathic phone: frictionless activity recognition from wifi-rssi. In: IEEE International Conference on Pervasive Computing and Communications (PerCom), PerCom ’14 (2014)

    Google Scholar 

  25. Wu, C., Gerlach, J., Young, C.: An empirical analysis of open source software developers motivations and continuance intentions. Inf. Manage. 44, 253–262 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay K. Madria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

He, J., Kunze, K., Lofi, C., Madria, S.K., Sigg, S. (2014). Towards Mobile Sensor-Aware Crowdsourcing: Architecture, Opportunities and Challenges. In: Han, WS., Lee, M., Muliantara, A., Sanjaya, N., Thalheim, B., Zhou, S. (eds) Database Systems for Advanced Applications. DASFAA 2014. Lecture Notes in Computer Science(), vol 8505. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43984-5_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43984-5_31

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43983-8

  • Online ISBN: 978-3-662-43984-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics